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Abstract—Strong acoustic resonances create long room impulse
responses (RIRs) which may harm the speech transmission in an
acoustic space and hence reduce speech intelligibility. Equalization
is performed by cancelling the main acoustic resonances common
to multiple room transfer functions (RTFs), i.e., common-acoustical-
poles, in the room. This paper discusses the utilization of different
norms (i.e., 2-norm and 1-norm) and models (i.e., all-pole and pole-
zero) for RTF modelling and then equalization. Acoustic resonances
may be modelled by means of the poles of the RTF. In the literature,
however, it is not clear what model (i.e., all-pole or pole-zero)
generates pole estimates that perform better in RTF equalization.
Furthermore, least squares error (i.e., 2-norm) minimization is
typically employed for the estimation of the poles. In this paper a least
absolute error (i.e., 1-norm) minimization is further proposed for pole
estimation. A comparative evaluation of these different norms and
models in terms of their residual RTF and residual RIR (i.e., the
residuals after equalization) is provided.

I. INTRODUCTION

The sound transmission characteristics between a loudspeaker and
a microphone are described in the frequency domain by the room
transfer function (RTF) or in the time domain by the room impulse
response (RIR) which depends on the loudspeaker-microphone po-
sition. In some audio applications (e.g., sound reproduction systems
in train stations or other large spaces) where speech intelligibility
is an issue, an equalization filter is commonly used to compensate
for the frequency response of the room. Such a filter may remove,
by inverse filtering, acoustical artefacts present in spaces with long
RIR originating from strong acoustic resonances. The equalization
performance then depends on the model from which the inverse filter
is derived. The most common model for the RTF is an all-zero model
[1]. It represents the physics of room acoustics where a microphone
signal is a weighted sum of discrete reflections of the loudspeaker
signal. Its drawback is that any change in the loudspeaker-microphone
or obstacle position inside the room will change all the coefficients
of the model. The equalization filter is then a single point inverse
filter which is only valid for a single point in the room and therefore
a recalculation of every coefficient will be needed at each and every
other point in the room [6].

One of the alternatives is to use a pole-zero model for the RTF
[1]. This model represents the physics of room acoustics by also
including the modelling of the acoustic resonances by means of
the poles of the transfer function. Poles can represent long impulse

responses caused by resonances, while zeros represent time delays
and antiresonances [7]. Yet another alternative model is the all-
pole model, which represents only the acoustic resonances in an
effort to model the RTF spectral envelope [1]. This provides an
appropriate strategy to cancel only the main resonances discarding
the cancellation of the zeros. Moreover, the concept of common
acoustical poles, first introduced in [7], can be applied to these two
alternative models. The underlying idea is that the acoustic resonances
in a room depend on the dimensions and shape of the enclosure and
not on the loudspeaker-microphone position. Each RTF in the room
may then be expressed using a common set of poles and different
zeros. Hence an inverse filter that cancels the common acoustical
poles can be created that equalizes the physically common main
resonances in multiple points in the room [6]. Finding the poles
of the transfer function may be seen as an optimization problem
in which the set of poles that minimizes the error between the
model and the measurements (i.e., the actual impulse response) is
sought for. Different models and error criteria will obviously render
different pole estimates and consequently different equalization filters
and residual RTFs. Typically a least squares error criterion (2-norm
minimization) is employed. In the literature, however, it is not clear
which of these models generate pole estimates that perform better in
the RTF equalization contest.

In this paper the use of a least absolute error criterion (1-norm
minimization) for RTF pole estimation is proposed. In [2] sparse
linear prediction of speech signals is used to obtain sparse residuals
with minimum number on non-zeros elements. With this idea in mind,
1-norm minimization is proposed here to calculate the poles of an
all-pole model, so that the inverse filtering will render a residual
impulse response having discrete separated reflection rather than a
dense impulse response. On the other hand, it is found that the poles
calculated from a pole-zero model using 1-norm minimization gives
results similar to the 2-norm pole-zero approach and therefore this
will not be considered any further. The aim of this paper is hence to
make a comparative evaluation involving 2-norm minimization using
an all-pole and a pole-zero model and 1-norm minimization using an
all-pole model. The comparative evaluation will be presented both in
time and frequency domain. Several questions on how the choice of a
model and norm affects the residual RTF and RIR will be addressed.

The paper is organized as follows. In section 2, the mathematical
formulation is presented for each model. In section 3, equalization
results using the presented techniques on real measured room impulse



responses are presented. Finally, section 4 concludes the paper.

II. POLE ESTIMATION USING DIFFERENT NORMS

Although the RTFs are different for each loudspeaker-microphone
position, all RTFs in a room share the same resonance frequencies.
These resonance frequencies may be visible as spectral peaks in the
RTFs [1]. If only the zeros cause RTF variation then the RTFs can
be expressed using a common denominator for all and a different
numerator for each of them. This can be represented by either
common poles, p(k), and distinct zeros, zi(k, t), or in polynomial
form using common autoregressive (AR), a(k), and distinct moving
average (MA), bi(k, t), coefficients [7],

Hi(q, t) =

∏Q
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(1− zi(k, t)q

−1)∏P

k=1
(1− p(k)q−1)

=

∑Q

k=1
bi(k, t)q

−k

1−
∑P

k=1
a(k)q−k

(1)

where Q and P are the order of numerator and denominator respec-
tively, i = 1, ...,M the number of RTFs and where q denotes the
time shift operator, i.e., q−ku(t) = u(t− k).

Mathematically the class of problems considered in this paper
can be cast into one general optimization problem associated with
finding the filter coefficient vector x from a set of measured impulse
responses cast in v and W, so that the error e = v−Wx is minimized

min
x
‖v−Wx‖pp (2)

where ‖·‖p is the p-norm defined for p > 1 as

‖x‖p =
(∑N

t=1
|x(t)|p

)1/p
. Matrix W and vector v involved

in the minimization problem (2) depend on whether the model
for pole estimation is all-pole or pole-zero and whether common
acoustical poles are considered. In the pole-zero model with common
acoustical poles case, matrix W and vector v are formed as

v = [h1, h2, ..., hM ]T

hi = [hi(0), hi(1), ..., hi(N − 1), 0, 0, 0]T

x = [a, b1, ..., bM ]T

a = [a(1), a(2), ..., a(P )]T

bi = [bi(0), bi(1), ..., bi(Q)]T

W =


W1 D 0 0 0
W2 0 D 0 0

... · · · 0
. . . 0

WM · · · · · · · · · D


⇒ size [M(N + P − 1)× (P +M(Q+ 1))]

D =



1
1 0
·

0 1
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· ·
· ·
0 · · 0


⇒ size [M(N + P − 1)× (P +M(Q+ 1))]

(3)

Wi =



0 0 · · · 0
hi(0) 0 · · · 0
hi(1) hi(0) · · · 0

...
...

...
...

...
...

... hi(0)

hi(N − 1) 0 · · ·
...

0 hi(N − 1) · · ·
...

...
... · · ·

...
0 0 · · · hi(N − 1)


⇒ size [(N + P − 1)× P ]

(4)

where hi is the ith length-N measured impulse response. If an all-
pole model is considered, matrix D and vectors bj are just set to
zero and vector x will only consist of AR coefficients (i.e., x =
[a]). Conversely, when a pole-zero model is considered, vector x will
consist of both AR and MA coefficients (i.e., x = [a, b1, ..., bM ]T ).
The set of a coefficients is estimated using either 2-norm or 1-norm
minimization and forms the filter polynomial A(q) = 1−a(1)q−1−
... − a(P )q−P . The residual B̃i(q) is the result of multiplying the
actual RTF with the inverse filter Ã(q).

Ã(q)Hi(q, t) = Ã(q)
Bi(q)

A(q)
= B̃i(q) (5)

where Ã(q) ∼= A(q)−1. The description of B̃i(q) in both time and
frequency domain (i.e., residual RIR and residual RTF respectively)
is directly affected by how Ã(q) is calculated. In 2-norm (i.e., least
squares error) minimization the optimal filter coefficient vector may
be given in closed-form as

x =
(

WT W
)−1

WT v (6)

However in 1-norm (i.e., least absolute error) minimization there
exists no closed-form solution and therefore the filter coefficient
vector is calculated as a solution to a convex optimization problem,
which can be solved efficiently, e.g. using CVX [8]. It is found, ex-
perimentally, that similar ARMA coefficients estimates are extracted
from a pole-zero model using 1-norm or 2-norm minimization, so
only 2-norm pole-zero model will be considered in the sequel.

III. RESULTS FROM MEASURED IMPULSE RESPONSES

In this section results obtained from two measured room impulse
responses are presented. The three methods (i.e., 1-norm all-pole and
2-norm all-pole and pole-zero) are compared by inspecting both the
residual RTF and the residual RIR. Matlab computer simulations were
performed at fs = 16kHz. The impulse responses, shown in Fig.
1, (h1 and h2) of length N = 2001 samples were measured in a
rectangular room of about 5 × 3 × 3 m. The order was chosen as
P = 500 and in the ARMA case also Q = 500. This order was found
to be sufficient to accurately model the measured impulse response in
the ARMA case, which served as a quality reference. Two objective
measures are employed:
• Spectral Flatness (SF )



The spectral flatness is calculated by dividing the geometric mean of
the power spectrum by the arithmetic mean of the power spectrum,
i.e.

SF =

N

√∏N−1

f=0
P (f)∑N−1

f=0
P (f)

N

(7)

where P (f) represents the magnitude of the f th bin, with N = 512.

• Sparseness Degree (SD)

The sparseness degree is the number of elements in the residual RIR
that have an absolute value smaller than some threshold close to zero,
i.e.

SD = {R(n) : |R(n)| < threshold} (8)

where R(n) represents the residual RIR and the threshold is set to
2 · 10−6.

Two different cases for each method are presented: In the first case,
the coefficients of the inverse filter are calculated from one impulse
response h1 (shown in Fig. 1 a). This filter is used to equalize h1

so as to clearly observe the residual RTF and residual RIR. In the
second case, the coefficients of the inverse filter to equalize h1 are
calculated using the set of two measured impulse responses (i.e., with
common acoustical poles). The frequency response of h1 is shown
in Fig. 1 b.

• First case

When Ã(q) is calculated from the all-pole model using 2-norm
minimization (Fig. 2(a), 2(d)) the flattest residual RTF is achieved.
On average, the magnitude difference between peaks and dips is very
small; however, it exhibits a long noise-like residual RIR because the
2-norm minimization shapes the residual into coefficients that exhibit
Gaussian like features [2].

When Ã(q) is calculated from the pole-zero model using 2-norm
minimization (Fig. 2(b), 2(e)) a highly coloured residual RTF is
achieved, which is a perceptually undesirable characteristic in RTF
equalization [5]. However, the short residual RIR may be desirable
in other audio applications such as acoustic echo or feedback can-
cellation [3], [4].

When Ã(q) is calculated from the all-pole model using 1-norm
minimization (Fig. 2(c), 2(f)), the residual RTF has been flattened
with respect to the true RTF and, in addition, the main low-frequency
resonances have been cancelled. The residual RIR exhibits a sparse
distribution of non-zero coefficients, which implies that the acoustic
reflections modelled by the residual RIR are forced to be more spaced
in time. The residual RIR from the 1-norm all-pole model shows
the largest number of zero coefficients, i.e., the highest degree of
sparseness. These results are summarized in Table I, where it can
be seen that the 1-norm all-pole model and 2-norm all-pole model
present the highest SD and the highest SF respectively.

• Second case

Fig. 3 shows that although in the common-acoustical-poles case the
overall performance has been deteriorated with respect to the single
impulse response case, the same main features can be observed on
the residuals.

TABLE I: SF and SD for the 1-norm all-pole, 2-norm all-pole and
pole-zero case

2-norm all-pole pole-zero 1-norm all-pole

SF 0.7 0.06 0.2

SD 5 43 503

IV. CONCLUSIONS

In this paper, results from RTF equalization have been presented.
Equalization is achieved by cancelling the poles associated with
the main resonances common to multiple RTFs in a room. Poles
were estimated by means of three different methods. Poles estimated
using 2-norm minimization and an all-pole model offered a residual
RTF having the flattest response. Poles estimated using 2-norm
minimization and a pole-zero model offered a large reduction in the
main low-frequency acoustic resonances. However the residual RTF
exhibited a highly coloured response, while the residual RIR was
shorter in time. Finally, poles estimated using 1-norm minimization
and an all-pole model offered a flat residual RTF with its main
resonances cancelled and a sparse residual RIR. This means that the
residual RIR will represent sparsely distributed discrete reflections.
This feature may be desirable in speech applications although a
deeper study taking into account perceptual considerations would be
needed.
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(a) Time evolution of h1 and h2 (b) Spectrum of h1 and h2 (RTF1 and RTF2)

Fig. 1: Frequency response function and time evolution of h1 and h2

(a) 2-norm all-pole model (b) pole-zero model (c) 1-norm all-pole model

(d) 2-norm all-pole model (e) pole-zero model (f) 1-norm all-pole model

Fig. 2: a,b,c) h1 residual RIRs and d,e,f) h1 residual RTFs, form single impulse response estimation

(a) 2-norm all-pole model (b) pole-zero model (c) 1-norm all-pole model

(d) 2-norm all-pole model (e) pole-zero model (f) 1-norm all-pole model

Fig. 3: a,b,c) h1 residual RIRs and d,e,f) h1 residual RTFs, from common-acoustical-poles calculation


