
A Vectorized Method for Computationally Efficient

SRP-PHAT Sound Source Localization

Bowon Lee and Ton Kalker

Hewlett-Packard Laboratories

1501 Page Mill Road

Palo Alto, CA 94304, USA

{bowon.lee, ton.kalker}@hp.com

Abstract—Most microphone array applications require sound
source localization for subsequent multichannel signal processing
algorithms. Steered response power-based source localization has
been the most popular method due to its robustness against
reverberation and background noise. Unfortunately, it requires a
grid search method whose computational cost is proportional
to the number of grid points, which makes it challenging
for real-time applications. This paper proposes an efficient
method for computing the steered response power by using
two different techniques. Firstly we propose to separate pre-
runtime computations from runtime computations. Secondly we
vectorize the computations and group similar computations with
a multi-threaded library (IPP) to efficiently exploit standard
processing architectures. Experimental results show that the
proposed method significantly reduces the computational load
of microphone array processing, making it viable for real-time
implementations on constrained devices.

Index Terms—Sound source localization, Steered response
power, Microphone array

I. INTRODUCTION

Microphone arrays have been widely used for applications

that require robust estimation of speech signals against noise,

interfering sources, and reverberation thanks to their spatial

selectivity [1]. Such applications generally require sound

source localization (SSL) for subsequent multichannel signal

processing algorithms such as beamforming, dereverberation,

noise suppression, and speaker diarization.

Sound source localization can be done by using a two-

stage method which finds time difference of arrival (TDOA)

estimations on all possible microphones pairs, followed by

hyperbolic localization [2], [3]. The two-stage method is

computationally inexpensive, but is subject to fail due to

TDOA estimation errors [1]. Unfortunately, background noise

and reverberation that are commonly present in most speech

processing systems are two major factors that decrease the

TDOA estimation accuracies, making this method not suitable

for such applications.

Alternatively, we can use search space methods that find a

source location having the maximum steered response power

(SRP) [4], or the maximum-likelihood (ML). These methods

use statistical models based on the Gaussian distribution [5]

or the Laplacian distribution [6] to search among all candidate

locations. Search space methods are robust, but require a

predefined search space resulting in computational complexity

proportional to the number of candidate source locations.

For example, if searching grid points in a three-dimensional

space of 3 m × 3 m × 1 m (width × depth × height) with

2 centimeter spacing, we have a total number of 1162851
candidate locations. With this search space, a system with 32
microphones, 48 kHz sampling frequency, and 2048 point DFT

using the SRP with the phase transform (PHAT) frequency

weighting requires a computational load of more than 40×1012

floating-point operations per second (FLOPS). These numbers

are impractical for real-time applications, unless measures are

taken to reduce the effective computational complexity or

adapt to specific processor architectures.

In order to make the SRP-PHAT algorithm suitable for

real-time applications, Johansson and Nordholm [7] proposed

the Root-SRP-PHAT algorithm of finding the global extrema

for the locations having its first derivative of the SRP curve

zero. This method, however, is not robust when the curve has

many local maxima which commonly happens at low SNR

caused by reverberation and noise. Also, it requires uniform

linear array and works for far-field sources because it exploits

the symmetry of the array covariance matrix. Recently, Do

et al. [8] proposed an iterative hierarchical method called

stochastic region contraction (SRC) to reduce the effective

number of candidate sources. Even with these optimizations,

a significant computational load is still needed for each

candidate source location. At any rate, these methods are

not exact implementation of the original SRP-PHAT method

because both of them assume smooth SRP curve and may not

give the same results as the original method when the SRP

curve has many local maxima due to background noise and

reverberation.

In this paper, we analyze the computational complexity of

the SRP-PHAT algorithm and propose a computationally effi-

cient method by exploiting pre-computation and vectorization.

The former refers to separating computations independent of

the input data from the SRP-PHAT computations. The latter

refers to efficiently using an optimized multi-threaded library

that runs efficiently on standard processing architectures. We

show that we can considerably reduce the computational

cost of SSL. Moreover, the proposed method can be further

used in conjunction with hierarchical search space refinement

algorithms such as the SRC [8] for even faster implementation.

II. SIGNAL MODELS

For an array of M microphones, the signal xm(t) captured

at the mth microphone can be expressed as follows

xm(t) = αq

ms(t− τq

m) + vm(t), (1)

where s(t) is the source signal, vm(t) is a term due to rever-

beration, interferences, and background noise, and αq

m and τq

m

denote attenuation and time delay due to propagation of the

signal s(t) from a source location q in the three-dimensional

space to the mth microphone. With this signal model, we can

express a vector Xω = [X1(ω), X2(ω), · · · , XM (ω)]T of the

microphone signals in the frequency domain as

Xω = S(ω)Dq

ω + Vω, (2)

where

Dq

ω = [Dq

1 (ω), Dq

2 (ω), · · · , Dq

M (ω)]T .

The elements Dq

m(ω) of the delay vector Dq

ω express the

attenuation αq

m and phase due to propagation delay τq

m, i.e.,

Dq

m(ω) = αq

me
−jωτq

m , (3)

which conveys information of the source location q. Thus, SSL

is a problem of finding a source location q corresponding to

a set of delay vectors Dq

ω given observations Xω for the set

of frequencies of interest.

III. STEERED RESPONSE POWER METHOD

The steered response power (SRP) method finds a source

location by comparing output power of a filter-and-sum beam-

former by steering to all possible source locations [4]. In the

frequency domain, this can be expressed as,

q̂ = arg max
q∈Q

M
∑

m=1

M
∑

l=1

∫

ψml(ω)Xm(ω)X∗
l (ω)ejω(τq

m
−τ

q

l
)dω,

(4)

where Q denotes the search space of all potential source loca-

tions and ψml(ω) denote frequency weightings or prefilters.

One of the most popular prefilters is the phase transform

(PHAT), which gives [9]

q̂ = arg max
q∈Q

M
∑

m=1

M
∑

l=1

∫

Xm(ω)X∗
l (ω)

|Xm(ω)X∗
l (ω)|

ejω(τq

m
−τ

q

l
)dω. (5)

Based on the observation that the integrand forms a sym-

metric matrix with diagonal entries independent of the source

location, Do et al. [8] suggested that computations can be

simplified by reducing the number of summations from M 2

to M(M − 1)/2. Furthermore, interchanging the order of

integration and summation and using its symmetry, Zhang et

al. [5] showed that Eq. (5) is equivalent to

q̂ = arg max
q∈Q

∫

∣

∣

∣

∣

∣

M
∑

m=1

Xm(ω)

|Xm(ω)|
ejωτq

m

∣

∣

∣

∣

∣

2

dω. (6)

which reduces the number of summations by a factor of M .

IV. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we present complexity analysis of the SRP-

PHAT method described in the previous section. For this, we

separate pre-runtime computations (independent of input data)

from run-time computations. Then we analyze the run-time

computational complexity of the method as given in Eq. (6)

in the DFT domain.

A. SRP-PHAT method in the DFT domain

We can express the SRP-PHAT method in Eq. (6) in the

DFT domain as

q̂ = arg max
q∈Q

P(q), (7)

where

P(q) =

N−1
∑

k=0

aq[k] (8a)

aq[k] = |bq[k]|
2

(8b)

bq[k] =

M
∑

m=1

cq[k] (8c)

cq[k] =
Xm[k]

|Xm[k]|
e−jθq

m
[k] (8d)

θqm[k] =
2πτq

m

KT
k, (8e)

where T denotes the sampling period, K is the DFT size,

and N is the number of DFT coefficients selected for SSL,

e.g., N = K/2 + 1 can be chosen for using the entire

spectrum for real input signal or N ≤ K/2 for the case when

a limited bandwidth is considered, e.g., speech sampled at

high sampling frequency. Among Eqs. (8a) through (8e), we

see that θqm[k] in Eq. (8e) is independent of the input data

Xm[k]. So we can pre-compute ejθq

m
[k] for m = 1, 2, · · · ,M ,

k = 0, 1, · · · , N − 1, and ∀q ∈ Q and store in the memory.

For real-time implementation, we need to consider only the

runtime complexity of the SRP-PHAT method. The straight-

forward execution of the algorithm through Eqs. (7) and (8a)-

(8d) is

1: for m = 1 to M do

2: FFT: xm(nT) → {Xm[k]}
3: for k = 0 to N − 1 do

4: PHAT: Xm[k] → Xm[k]
|Xm[k]|

5: end for

6: end for

7: for all q ∈ Q do

8: for k = 0 to N − 1 do

9: for m = 1 to M do

10: cq[k] = Xm[k]
|Xm[k]|e

−jθq

m
[k]

11: end for

12: bq[k] =
∑M

m=1 c
q[k]

13: aq[k] = |bq[k]|
2

14: end for

15: P(q) =
∑N−1

k=0 aq[k]
16: end for

17: Find q̂ = arg max
q∈Q P(q).

B. Complexity analysis

According to the algorithm described in the previous sec-

tion, the number of arithmetic operations (real multiplications

and additions) at runtime can be described as a function of the

number of microphones M , the FFT size K, the number of

frequency bins selected for SSL N , and the number of SSL

candidates Q as follows.

• Real FFT: 5
2MK log2K (multiplications)

• PHAT: 10MN ([8]) (multiplications)

• SRP: (Eqs. (8a) through (8d))

1) P(q): 2NQ (additions)

2) aq[k]: 2NQ (multiplications) + NQ (additions)

3) bq[k]: 2MNQ (additions)

4) cq[k]: 4MNQ (multiplications) + 2MNQ (addi-

tions)

Typically QÀM,N,K as exemplified in Section I, so the

SRP calculation stage consumes most of computation time and

is the main candidate for further optimizations.

C. Stochastic Region Contraction

According to the complexity analysis, the complexity of the

SRP-PHAT method is mainly governed by Q, the number of

candidate source locations. Unless we know that we can use

a subset with size Qs out of the entire search space where

Qs ¿ Q (e.g., source tracking), we need to compute the

SRP of all Q candidate source locations at every frame. In

order to reduce the effective number of source locations, Do

et al. [8] proposed a method referred to as the stochastic

region contraction (SRC), which is a hierarchical algorithm

that iteratively reduces the size of search space, gradually

reducing the granularity of the search grid. They showed that

the computational complexity can be reduced by more than

two orders of magnitude without significantly losing accuracy.

Nevertheless, since the SRC is a method to reduce the effective

number of source locations, the computational complexity

required for each candidate source location still remains the

same.

V. EFFICIENT SRP-PHAT COMPUTATION

In this section, we describe the use of a multi-threaded

library - Intel’s Integrated Performance Primitives (Intel IPP)

library in our case - for efficiently computing the SRP-PHAT.

This method can be used in conjunction with the SRC for even

faster implementations.

It is well-known that even for the same number of arithmetic

operations, the performance of executing a set of operations

is highly dependent upon optimization based on processor

architecture, multi-core threading, etc [10]. In particular, the

use of a highly optimized library is crucial for real-time

applications running algorithms with large computational com-

plexity. For example, the Intel IPP library supports thousands

of mathematical operations for vectors and matrices that is

highly optimized for various multicore processors [11]. It also

uses internal multi-threading to maximize their performance

on multi-core processors. Since this library uses optimized

implementations of vector/matrix operations, it is necessary to

vectorize internal arguments - aq[k], bq[k], cq[k] in Eqs. (8b)

through (8d) - to fully exploit its optimization.

A. Vectorization of the SRP-PHAT method

Based on the above discussions, we vectorize computations

by defining the following vectors. aq = {aq[k]}, bq =
{bq[k]}, and cq = {cq[k]}, Then we execute Eqs. (7) and (8a)-

(8d) as follows.

1: for m = 1 to M do

2: FFT: xm(nT) → {Xm[k]}

3: PHAT: {Xm[k]} →
{

Xm[k]
|Xm[k]|

}

4: end for

5: for all q ∈ Q do

6: for m = 1 to M do

7: cq =
{

Xm[k]
|Xm[k]|e

−jθq

m
[k]

}

8: end for

9: bq =
{

∑M

m=1 c
q[k]

}

10: aq =
{

|bq[k]|
2
}

11: P(q) =
∑N−1

k=0 aq[k]
12: end for

13: Find q̂ = arg max
q∈Q P(q).

By vectorizing with respect to k, we eliminated the nested

loops for k = 0, 1, · · · , N − 1 present in the algorithm

described in Section IV. Even though the number of operations

remains the same, we reduce the number of function calls for

for each operation by a factor of N , delegating the scheduling

of the arithmetic operations to the low-level capabilities of the

processor’s architecture and the multi-threaded library.

In the following section, we present experimental results to

demonstrate performance of the proposed algorithm (named

‘Vector’) and the algorithm presented in Section IV (named

‘Scalar’).

VI. EXPERIMENTS

For evaluating computational efficiency of the proposed

method, we made multichannel audio recordings with a uni-

form linear array of eight microphones (M = 8) with inter-

microphone spacing of 0.15 m in a conference room. For the

source speech, we played a pre-recorded clean female speech

signal through a loudspeaker, which is located (1.45 m, 3 m)

away from the center of the microphone array as illustrated in

Fig. VI. Audio is recorded at 48 kHz sampling frequency with

24 bit resolution, which is later downsampled to 32 kHz with

16 bit resolution. The conference room has a dimension of

4.5 m × 10 m × 2.5 m with reverberation time T60 = 500ms.

The search space used for the experiment is a two-

dimensional area with size 3 m × 2 m having a minimum

distance of 3 m from the microphone array (See Fig. VI). The

grid points are located in a uniform spacing of 0.2 m. With this

search space, the total number of candidate source locations

of the search space is Q = 176. We set a standard FFT size

K = 2048, which is the same as the time-domain frame size.

Fig. 1. Experimental configuration

Implementation Scalar Vector

Average CPU Load (%) 39.22 14.46

CPU Load Variance 2.66 2.05

TABLE I
CPU LOAD OF THE Scalar AND Vector IMPLEMENTATIONS

Since typical speech signals contain most of energy below

8 kHz, we used only a quarter of the FFT bins, i.e., N = 512
in the SRP-PHAT algorithm.

For this experimental setup, the number of floating point

operations are 5
2 ×8×2048 log2 2048 = 450560 for FFT, 10×

8×512 = 40960 for PHAT, and 8×8×512×176+5×512×
176 = 6217728 for SRP, resulting in the total of 6709248
floating point operations per frame. Since the frame rate is

32000/2048 = 15.625 frames per second, this configuration

leads to a total of 104832000 floating point operations per

second (≈ 100MFLOPS).

We used a HP nw8440 notebook computer with an Intel

Core Duo Processor T2500 running at 2 GHz for the exper-

iments. For comparison, we measured the CPU load of the

two SRP-PHAT implementations (Scalar and Vector) running

in real-time. The CPU load is measured every two seconds

for 100 seconds resulting in 50 measurements for each. The

results in terms of mean and variance of the CPU load are

summarized in Table I.

The results show that the vectorization reduces the CPU load

by a factor of 2.7, even with the same number of arithmetic

operations.

VII. CONCLUSION

In this paper, we presented a computationally efficient

method for the SRP-PHAT SSL algorithm. By separating pre-

runtime and runtime computations, and exploiting the multi-

threaded library and vectorizing the internal arguments for

runtime computation, we showed that we can significantly

reduce the CPU load for SSL computations. In conjunction

with iterative search space refinement methods such as the

SRC, our proposed method can be realistically applied to real-

time microphone array applications for reasonably sized search

spaces.

REFERENCES

[1] M. S. Brandstein and D. B. Ward, Microphone Arrays: Signal Processing

Techniques and Applications. Berlin, Germany: Springer-Verlag, 2001.
[2] M. Brandstein, J. Adcock, and H. Silverman, “A practical time-delay

estimator for localizing speech sources with a microphone array,”
Computer Speech and Language, vol. 9, pp. 153–169, 1995.

[3] ——, “A closed-form location estimator for use with room environment
microphone arrays,” IEEE Trans. Speech and Audio Process., vol. 5, pp.
45–50, 1997.

[4] J. DiBiase, “A high-accuracy, low-latency technique for talker localiza-
tion in reverberant environments,” Ph.D. dissertation, Brown University,
Providence, RI, May 2000.

[5] C. Zhang, Z. Zhang, and D. Florêncio, “Maximum likelihood sound
source localization for multiple directional microphones,” in Proc. Int.

Conf. Acoust., Speech, and Signal Process., vol. I, 2007, pp. 125–128.
[6] B. Lee, T. Kalker, and R. W. Schafer, “Maximum-likelihood sound

source localization with a multivariate complex Laplacian distribution,”
in Proc. Int. Workshop. Acoust. Echo and Noise Control., 2008.

[7] A. Johansson and S. Nordholm, “Robust acoustic direction of arrival
estimation using Root-SRP-PHAT, a realtime implementation,” in Proc.

Int. Conf. Acoust., Speech, and Signal Process., vol. IV, 2005, pp. 933–
936.

[8] H. Do, H. F. Silverman, and Y. Yu, “A real-time SRP-PHAT source
location implementation using stochastic region contraction (SRC) on
a large-aperture microphone array,” in Proc. Int. Conf. Acoust., Speech,

and Signal Process., vol. I, 2007, pp. 121–124.
[9] C. H. Knapp and G. C. Carter, “The generalized correlation method

for estimation of time-delay,” IEEE Trans. Acoust., Speech and Audio

Process., vol. ASSP-24, no. 4, pp. 320–327, 1976.
[10] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-

tative Approach. Morgan Kaufmann, 2006.
[11] “Intel integrated performance primitives (intel IPP) 6.1: In-depth,”

Intel Corporation, http://software.intel.com/sites/products/collateral/hpc/
ipp/ipp indepth%.pdf.

