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ABSTRACT

The so-called semi-blind source separation (SBSS) is an extension of

BSS when some signals can be directly and individually measured.

SBSS can be used to implement multi-channel acoustic cancellation

(MCAEC) without the need for double-talk detection. However,

traditional MCAEC approaches based on least mean-square (LMS)

lead to a non-unique solution due to correlated sources formed

when a single far-end signal is captured by multiple microphones

and played out through the near-end loudspeakers. The same non-

uniqueness problem can be also expected during SBSS. In this study,

the effect of using a decorrelation procedure for mitigating the non-

uniqueness problem by applying a nonlinearity or a noise to the

far-end reference signals is measured when BSS and stereophonic

AEC (SAEC) are simultaneously implemented through SBSS. The

simulation results show that the benefit, in terms of the misalignment

and the echo return loss enhancement (ERLE), of using a decorre-

lation procedure can be significant for SBSS while not interfering

with the source separation performance at all.

Index Terms— semi-blind source separation, multi-channel

acoustic echo cancellation, non-uniqueness problem

1. INTRODUCTION

Blind source separation (BSS) has become a very popular and effec-

tive method for canceling interfering signals from unknown sources

when there are multiple input channels. Most of the latest BSS tech-

niques are based on the independent component analysis (ICA) [1]

that achieves separation of mixed signals by maximizing the statisti-

cal independence between output signals. Recently, there have been

several attempts at combining BSS with acoustic echo cancellation

(AEC) in the frequency-domain [2–4]. Such a combination of BSS

and AEC is appropriately referred to as semi-BSS (SBSS) since the

signals from the far-end sources that are to be played back through

near-end loudspeakers are known prior to mixing at the near-end,

thus semi-blind, and can be used directly for adaptation of the un-

mixing filter. The clear advantage of implementing AEC through

BSS techniques is that the double-talk detection (DTD) is no longer

needed since no distinction is made between local and remote signal

sources, whereas the disadvantage is that the current BSS algorithms

are much more computationally expensive than the traditional AEC

algorithms.

Just as in BSS that deals with separation of multiple sources, we

are also interested in the multi-channel AEC (MCAEC) for the iden-

tification of multiple echo paths and the cancellation of signals that

go through them. It is well known that MCAEC algorithms based on
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the least mean-square (LMS) theory suffer from the non-uniqueness

problem caused by the ill-conditioning of the autocorrelation ma-

trix formed from multiple reference signals that are correlated [5–7].

The problem is especially significant when only one remote source is

active, and it makes the tracking of changes in the echo paths much

more difficult as the LMS-based adaptive algorithms may not be able

to converge to a new non-unique solution fast enough. Thus to alle-

viate the ill-conditioning of the matrix, the reference signals can be

pre-processed by applying some multi-channel form of nonlinearity

to decrease the correlation between them [6, 7]. This process, how-

ever, can degrade the quality of playback of the received signals,

and it incurs a cap on how much decorrelation can be reasonably

achieved without adding perceptually noticeable distortion. Another

straight-forward method is to add white noise to the signals, the pro-

cedure of which is also limited by the degradation in the signal-to-

noise ratio (SNR). Many other decorrelation methods are discussed

in [7].

In this paper, we explore the effect of applying a decorrela-

tion procedure when BSS and stereophonic AEC (SAEC) are im-

plemented together through SBSS. Although the ICA-based BSS al-

gorithms are inherently more robust to ill-conditioning than the tra-

ditional LMS-based algorithms, as ICA allows the optimization of

not only the second order but also the higher order statistics of out-

put signals, we should expect that they are affected in some way

by highly correlated signal sources during the system identification

process. Also, it is not clear how much side effect the decorrelation

procedure has on the source separation performance.

The paper is organized as follows. First, the semi-blind source

separation scheme is described that achieves both source separation

and echo cancellation. Second, the SBSS and the traditional AEC

algorithms to be tested and methods for evaluating the effects of

decorrelation procedures are presented. Finally, simulation results

and discussions are given, followed by concluding remarks at the

end.

2. SEMI-BLIND SOURCE SEPARATION

Figure 1 shows the overall configuration for a combination of stereo-

phonic teleconferencing and SBSS. We assume here that all of the

sources are stationary in order to eliminate the problem of tracking

the room response change due to moving sources. Then the time-

invariant instantaneous mixing in the frequency-domain that occurs

at the far-end and at the near-end can be summarized together as

[

Xn(f, t)
Xf (f, t)

]

=

[

Hn(f) Hf (f)
0 G(f)

] [

Sn(f, t)
Sf (f, t)

]

, (1)

where Sn(f, t) and Sf (f, t) are the short-time Fourier transform

(STFT) of the near and the far-end sources sn(t) = [s1(t), s2(t)]
T
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Fig. 1. Configuration for stereophonic teleconferencing and semi-

blind source separation (SBSS).

and sf (t) = [s3(t), s4(t)]
T , respectively; Xn(f, t) and Xf (f, t)

are the STFT of the locally mixed signals and the reference signals

xn(t) = [x1(t), x2(t)]
T and xf (t) = [x3(t), x4(t)]

T , respectively;

and Hn(f), Hf (f), G(f) are the STFT of the near and the far-end

room impulse responses hn(t) = [[h11(t), h21(t)], [h21(t), h22(t)]]
T ,

hf (t) = [[h13(t), h23(t)], [h14(t), h24(t)]]
T , and g(t) = [[g

11
(t),

g
21

(t)], [g
21

(t), g
22

(t)]]T , respectively. The 4-by-4 unmixing ma-

trix W(f) must be estimated such that

[

Yn(f, t)
Yf (f, t)

]

=

[

W1(f) W2(f)
0 W3(f)

] [

Xn(f, t)
Xf (f, t)

]

. (2)

The optimal W(f) can be obtained by employing ICA and maximiz-

ing the statistical independence between all of the components in the

output vector y(t) = [yn(t), yf (t)]T = [y
1
(t), y

2
(t), y

3
(t), y

4
(t)]T

as demonstrated in [2], [3], and [4].

The matrix W1(f) = [[w12(f), w21(f)], [w21(f), w22(f)]]T is

for source separation while W2(f) = [[w13(f), w23(f)], [w14(f),
w24(f)]]T is for echo cancellation, which by design is performed

after the source separation. On the other hand, the exact form of

W3(f) = [[w33(f), w43(f)], [w34(f), w44(f)]]T is arbitrary, as it

can be constrained to be an identity matrix [2], a diagonal matrix,

or a full-matrix [4]. Although the output yf (t) = [y
3
(t), y

4
(t)]T is

not necessary for the stereo teleconferencing purpose, it is still used

during ICA-based optimization. In this study, we will use a diago-

nal matrix as motivated by [3] that did not assume yf (t) = xf (t).

We feel that a full matrix will counteract the decorrelation procedure

since in such a case (2) implies that yf (t) is a linear combination

of xf (t). We also believe that the use of a more general diagonally

constrained matrix instead of the identity matrix is better suited for

simultaneous optimization of the source separation and the echo can-

cellation performances through ICA.

In the traditional MCAEC framework, changes in the far-end

room response G(f) can also disrupt the filter adaptation that is per-

formed at the near-end (i.e. when an active source suddenly switches

from one to another at the far-end) [5–7]. For such a situation,

the adaptation of W3(f) may be designed accordingly to track the

changes in G(f). However, such a topic is beyond the scope of this

paper and is not addressed at this time.

3. EVALUATION METHODS

In this study, the SBSS algorithm in [3] is extended to include not

just one but two reference channels. The residual echo signal without

the source separation can be obtained by taking the matrix product

E(f, t) = [I, W
−1

1 (f)W2(f)][XT
n (f, t), X

T
f (f, t)]T , (3)

where I is a 2-by-2 identity matrix. The pre-multiplication of W2(f)
by W−1

1
(f) follows the projection back procedure [3, 8], which fur-

ther enhances the source separation performance and is a part of the

post-processing indicated in Fig. 1. The algorithm from WinEC pre-

sented in [9] is used to implement the traditional SAEC. WinEC uses

a coherence-based DTD along with an outlier-robust adaptive algo-

rithm that limits the effect of double-talk leakage before the filter

adaptation is suspended. The residual echo suppression is not used

for comparison purpose with SBSS.

For both SBSS and WinEC, the following “half-wave rectifying”

decorrelation nonlinearity is used [7]:

x
′
3(t) = x3(t) + α

x3(t) + |x3(t)|

2
, (4)

x
′
4(t) = x4(t) + α

x4(t) − |x4(t)|

2
. (5)

The amount of decorrelation, thus the degree of signal distortion, is

controlled by the factor α, which can be as large as 0.5 before the

stereo perception is affected [7]. A simple procedure of inserting the

additive white Gaussian noise (AWGN) to the reference channels is

also tested as another decorrelation method.

Three types of performance measures are used. First, the true

echo return loss enhancement (tERLE), which measures the mean

square error (MSE) performance, for the ith near-end microphone

channel (i = 1,2) is defined as

tERLE(i) = 10 log
10

‖xi(t) −
∑

2

k=1
hT

ik(t)sk(t)‖2

‖ei(t) −
∑

2

k=1
hT

ik(t)sk(t)‖2
(dB), (6)

which is simply the traditional ERLE calculated after removing the

near-end speech so that the true reduction in the echo can also be

calculated during the double-talk. Next, the misalignment, which

measures the system identification performance, for the ijth echo

path (i = 1,2, and j = 3,4) is defined as

Misalignment(i, j) = 10 log
10

‖hij(t) − ĥij(t)‖
2

‖hij(t)‖2
(dB), (7)

where the impulse response estimate ĥij(t) for SBSS can be ob-

tained by taking the inverse Fourier transform of −W−1

1
(f)W2(f).

Finally, the signal-to-interference ratio (SIR), which measures the

source separation performance, for the ith local source (i = 1, 2, 3,

4) is defined as

SIRin(i) = 10 log
10

∑

2

k=1
(hT

ki(t)s′i(t))
2

∑

2

k=1
(
∑

j 6=i
hT

kj(t)s′j(t))
2

(dB), (8)

SIRout(i) = 10 log
10

∑

2

k=1
(rT

ki(t)s′i(t))
2

∑

2

k=1
(
∑

j 6=i
rT
kj(t)s′j(t))

2
(dB), (9)

SIR(i) = SIRout(i) − SIRin(i) (dB), (10)
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Fig. 2. Average tERLE when used with half-wave rectifying decor-

relation nonlinearity while varying the distortion factor α for one (1)

or two (2) far-end talkers.
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Fig. 3. Average tERLE when used with additive white Gaussian

noise while varying SNR for one (1) or two (2) far-end talkers.

where s′i(t) = si(t) for i = 1,2, or s′i(t) = xi(t) for i = 3,4, and

rki(t) is an overall impulse response for the kth output that encom-

passes the near-end room response, the unmixing filter response, and

the projection back filter response.

4. SIMULATION RESULTS

Two sets of impulse responses, one for far-end and another for near-

end, were measured in a controlled acoustic environment and used

for simulation. The impulse responses were truncated to 128 ms

in length. A recorded background sound containing air conditioner

noise was scaled to 30 dB SNR and added to the near-end micro-

phone mixtures to simulate a more realistic acoustic condition. 16

kHz TIMIT recordings were used to simulate either one or two far-

end talkers and always two near-end talkers. The individual TIMIT

speeches were concatenated with silence added between them such

that there were roughly 25% overlap of speeches at the far-end, 25%
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Fig. 4. Average misalignment when used with half-wave rectifying

decorrelation nonlinearity while varying the distortion factor α for

one (1) or two (2) far-end talkers.
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Fig. 5. Average misalignment when used with additive white Gaus-

sian noise while varying SNR for one (1) or two (2) far-end talkers.

overlap between the far-end and the near-end signals (i.e. during

double-talk), and 75% overlap of speeches at the near-end. Single-

talk (i.e. when only the far-end sources are active) was enforced for

the first two seconds in order for WinEC to converge sufficiently.

SBSS was ran for 500 iterations in a batch mode (i.e. off-line) for 10

seconds of simulated signals. WinEC was adapted frame-by-frame

(i.e. on-line) for also 10 seconds. The performance measures were

averaged over ten simulations using different sets of speeches and

across all possible microphone channels and echo paths. The tERLE

was calculated only during voice activity for both SBSS and WinEC.

It must be noted before any comparisons are made between

SBSS and WinEC that since we are not dealing with the problem of

tracking the changes in the room responses, the advantage of using

the decorrelation procedure is mostly lost for WinEC. Also, it is

unfair to compare SBSS directly against WinEC since the number

of iterations used by the SBSS’s adaptive algorithm is not lim-

ited. WinEC is used here mainly to show what is possible with the
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while varying SNR for one (1) or two (2) far-end talkers.

traditional real-time SAEC approach.

The average tERLE plots for SBSS and WinEC as a function of

α and SNR are shown in Fig. 2 and 3. The number in parenthe-

ses (1 or 2) next to algorithm names in the figures correspond to the

number of far-end talkers. We see from the figures that as the de-

gree of decorrelation is increased (i.e. as α is increased or SNR is

decreased), WinEC shows only a small improvement in the tERLE,

whereas SBSS exhibits between 3 to 8 dB gain in the tERLE. Also,

having two far-end sources helps both SBSS and WinEC achieve

better echo cancellation, which is consistent with the idea that mul-

tiple active far-end sources that are separated spatially should help

decorrelate the reference signals.

The average misalignment plots for SBSS and WinEC as a func-

tion of α and SNR are shown in Fig. 4 and 5. The figures show that

the improvement due to the decorrelation procedures is much more

significant for SBSS-based system identification than for the tradi-

tional LMS-based approach. The reduction in the misalignment can

be over 20 dB for SBSS compared to 10 dB for WinEC. Again, the

two-sources case produces lower misalignment than the one-source

case for both SBSS and WinEC.

Finally, the average SIR for SBSS as a function of α and SNR

is plotted in Fig. 6 and 7. Although not as dramatic as the improve-

ment in the ERLE and the misalignment, some gain in the SIR is

observed for both decorrelation methods. The overall improvement

in the SIR is consistent with the notion that better echo cancellation

should also help the adaptation of unmixing filter for source separa-

tion by reducing the correlation between the output signals caused

by the residual echo.

5. CONCLUSION

The effect of using a decorrelation procedure in order to alleviate

the non-uniqueness problem during semi-blind source separation

(SBSS) for the purpose of stereophonic acoustic echo cancellation

(SAEC) was examined. Simulated experiment showed that either ap-

plying the half-wave rectifying decorrelation nonlinearity or adding

the white Gaussian noise to the reference signals can decrease the

misalignment by over 20 dB for SBSS. The corresponding improve-

ment of between 3 to 8 dB in the true echo return loss enhancement

(tERLE), which is the traditional ERLE calculated by removing

the near-end speech during the double-talk, was shown. Small yet

observable improvement in the source separation performance, mea-

sured in terms of the signal-to-interference ratio (SIR), was also

achieved after the inclusion of the decorrelation procedures.
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