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ABSTRACT
An analytical optimization method for nonlinear beamforming is
proposed. It has been shown that twice the number of noise sources,
compared to conventional linear beamformers, can be cancelled by
nonlinear array signal processing with complementary beamform-
ing and spectral subtraction. However, optimization of the beam-
former coefficients via conventional adaptation techniques often suf-
fers from a severe convergence problem. In this paper, we propose a
new efficient optimization algorithm by re-writing the optimization
objective of the two complementary beamformer vectors in a con-
vex minimization problem, which can be solved with an analytical
solution.

Index Terms— Adaptive beamformer, microphone array,
speech enhancement, spectral subtraction.

1. INTRODUCTION
In many speech applications, from teleconferencing to human-
machine interface via voice, signal acquisition without the interven-
tion of the talkers or users is essential. Common microphones when
used in such situations at a distance from the signal sources tend to
capture an excessive amount of interference (acoustic ambient noise,
reverberation, and others) and the quality of the captured signal is
often considered undesirable. As a solution to this problem, micro-
phone arrays that provide directivity gains by forming beam patterns
towards the desired signal sources have been proposed for some
time [1]. The advantage of beamforming is in its flexible control of
the beam pattern to enhance or suppress sound sources in specific
directions. The suppression ability of an array is particularly strong
if the noise is generated from a point source in a free field.

However, conventional linear beamformers are often inadequate
due to a number of reasons. First, the number of point sources to
be suppressed via placement of directional nulls is bounded by the
number of the microphones in the array. Second, in an ordinary sit-
uation, acoustic interferences in an enclosure (e.g., a room, a hall or
an auditorium) tend to be diffuse rather than from point sources. In-
terference suppression in many real applications involves more than
the placement of directional nulls. Thus, in order to deliver a reason-
able performance on the captured signal quality, a beamformer must
be integrated with other signal processing techniques and the idea of
relying on a directivity pattern to mitigate the interference problem
must be broadened.

There are a number of approaches to extending the basic idea of
beamforming, such as incorporating single-channel nonlinear post-
processing like spectral subtraction (SS) [2, 3, 4, 5, 6], Wiener fil-
tering [7], or other amplitude estimation signal enhancement tech-
niques [8]. In this paper, we focus on the integration of beamforming
and SS, which, as shown in [3], can nullify twice the number of di-
rectional noise sources compared to conventional linear beamform-
ers. The improved suppression capability is afforded by integrating
the SS algorithm, which operates on the primary path (to enhance
the target signal) and the reference path (to estimate the interfering
noise), and the corresponding directional null placement along both
the primary and reference paths in a jointly optimized fashion. Note
that spectral subtraction is no longer employed as a post-processing
technique to further reduce the residual interference in the output of
a beamformer; rather, it is integrated into the array processing and
optimization, thus making the resultant beamforming system a non-
linear one.
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The beamformer coefficients of the system need to be computed
according to a certain criterion. Conventionally, adaptive algorithms
such as the technique proposed in [3] are employed to obtain the op-
timization solution. However, these techniques usually suffer severe
convergence problems. Other integrated approaches of beamform-
ing and SS [2, 5] only adjust the noise estimator adaptively, com-
promising the overall system performance. Suppression of multiple
sources is essential in source localization, and the property of SS-
integrated beamformer is effective, as utilized in [4]. Nevertheless,
real-time processing is just as critical important in many applications
of source localization and poor convergence in the adaptive solution
is detrimental. In this paper, we propose an efficient algorithm for
the optimization of the integrated nonlinear beamforming system.
The algorithm is derived by reformulating the nonlinear beamform-
ing adaptation as a convex optimization problem, to which an ana-
lytic solution can be obtained, thereby circumventing the difficulty
in algorithmic convergence.

2. OBSERVATION MODEL
Consider D interfering noise sources nd(ω), d = 1, 2, . . . , D, and
a target source s0(ω) that are distributed in a room are observed at a
K-element microphone array as

x(ω) = [x1(ω) x2(ω) · · · xK(ω)]T , (1)

where ω is the angular frequency and {·}T denotes matrix transpo-
sition. Denoting the transfer function from the d-th noise source to
the k-th microphone element as akd(ω) and from the target source
to the k-th microphone element as ak0(ω), we have

x(ω) = a0(ω)s0(ω) +

D
X

d=1

ad(ω)nd(ω), (2)

ad(ω) = [a1d(ω) a2d(ω) · · · aKd(ω)]T . (3)

In the frequency-domain adaptation of spatial filters, we assume the
transfer functions change slowly and may be regarded time-invariant
for suitable length of time duration. Ignoring bias caused by the
window of the frame analysis, we adopt the usual short-time analysis
practice and write each frame of analysis of the observed signals as

x(ω, t) = a0(ω)s0(ω, t) +
D

X

d=1

ad(ω)nd(ω, t), (4)

where x(ω, t) denotes signal x(ω) in the t-th analysis frame.

3. CONVENTIONAL LINEAR ADAPTIVE BEAMFORMER
The goal of adaptive beamforming is to suppress or cancel the noise
components without degrading the target signal. A linear beam-
former is an ensemble of FIR filters

w(ω) = [w1(ω) w2(ω) · · · wK(ω)] , (5)
applied to the observed signals captured at the microphones, respec-
tively, so as to obtain an enhanced signal y(ω), formed by summing
those filtered signals as

y(ω) = w(ω)x(ω). (6)

Note that we define the filters in a row vector w(ω) in Eq. (5). The
beamformer will successfully suppress the noise component if

w(ω)ad(ω) = 0 for d = 1, 2 . . . , D. (7)
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Fig. 1. Block diagram of the complementary beamformer.

In addition, the target source is extracted without degradation as
y(ω) = s0(ω) if

w(ω)a0(ω) = 1. (8)
It is clear that the number of the noise sources to be cancelled in
Eq. (7) is bounded by the number of the sensors as K − 1.

A typical technique to adaptively obtain the beamformer co-
efficients is the linearly constrained minimum variance (LCMV)
method which uses minimum output power in the training data as
the optimization objective [1]:

min
w(ω)

⟨|y(ω, t)|2⟩t=l1,l2...,lL subject to w(ω)r(ω) = 1, (9)

where ⟨·⟩t=l1,l2,...,lL denotes averaging operator over the range of
frame indices t, t = l1, l2, . . . , lL, and r(ω) is an estimate of the
transfer function a0(ω) w.r.t. the target source, refered to as the
steering vector. The steering vector is synthesized from assumed
direction of the target source. Note that “training” data x(ω, t), t =
l1, l2, . . . , lL must exclude those frames when target source is active;
otherwise, the objective of Eq. (9) becomes meaningless. The La-
grange multiplier method gives the solution of LCMV beamformer
in an analytical form as

w(ω) =
r(ω)H `

⟨x(ω, t)x(ω, t)H⟩t=l1,l2,...,lL

´−1

r(ω)H (⟨x(ω, t)x(ω, t)H⟩t=l1,l2,...,lL)−1 r(ω)
, (10)

where {·}H and {·}−1 denotes conjugate transposition and inversion
of matrix, respectively.

4. NONLINEAR MICROPHONE ARRAY
4.1. Nonlinear Beamforming with Spectral Subtraction
In the current work, a nonlinear beamformer is formed by integrat-
ing complementary beamforming and the technique of spectral sub-
traction. Complementary beamforming involves two adaptive beam-
formers, the outputs of which are used as inputs to the SS algorithm,
resulting in a strong interference cancellation performance at a com-
promise of the phase information [3]. While a conventional linear
beamformer can deal with as many sources as the sensors, a nonlin-
ear microphone array has the ability to deal with twice the number
of the sources.

Figure 1 shows a block diagram of the nonlinear array signal
processing. First, two processed signals, y(g)(ω) = g(ω)x(ω) and
y(h)(ω) = h(ω)x(ω), are obtained as the output of two beamform-
ers g(ω) and h(ω) with different beam patters:

y(g)(ω) = g(ω)a0(ω)s0(ω) +

D
X

d=1

g(ω)ad(ω)nd(ω), (11)

y(h)(ω) = h(ω)a0(ω)s0(ω) +
D

X

d=1

h(ω)ad(ω)nd(ω). (12)

The directivity patterns of the two beamformers are designed to be
complementary, i.e., they satisfy the condition

|g(ω)ad(ω)| ≫ |h(ω)ad(ω)|, (13)

or
|h(ω)ad(ω)| ≫ |g(ω)ad(ω)|, (14)

for each of d = 1, 2, . . . , D, and unity for the target source as

g(ω)a0(ω) = h(ω)a0(ω) = 1. (15)

Under the complementary condition, the sum y(p)(ω) = y(g)(ω) +

y(h)(ω), refered to as primary signal, and difference y(r)(ω) =

y(g)(ω)−y(h)(ω), refered to as reference signal, of the beamformer
outputs, can be given as

y(p)(ω) = 2s0(ω) +

D
X

d=1

[g(ω) + h(ω)] ad(ω)nd(ω), (16)

y(r)(ω) =

D
X

d=1

[g(ω) − h(ω)] ad(ω)nd(ω). (17)

If the directivity patterns g(ω)ad(ω) and g(ω)ad(ω) are designed
complementary, and if there is no correlation among the sources, the
following approximation holds:
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Thus, the noise component in the primary signal can be approxi-
mated by the reference signal, and the estimated power spectrum of
the recovered signal is given as

|y(ω)|2 =
1

4

n

|y(p)(ω)|2 − E[|y(r)(ω)|2]
o

=
1

4

h

{g(ω) + h(ω)} x(ω)x(ω)H {g(ω) + h(ω)}H

− {g(ω) − h(ω)} x(ω)x(ω)H {g(ω) − h(ω)}H
i

=
1

4

n

g(ω)x(ω)x(ω)Hh(ω)H + h(ω)x(ω)x(ω)Hg(ω)H
o

.

(19)

4.2. Adaptation
A criterion for coefficient optimization is the minimization of a
squared error under the constraint to maintain a unity gain with
respect to the steering vector r(ω). However, the solution to the
minimization of the squared error is not unique and does not always
give the optimal directivity pattern. To avoid the trivial solution,
block-averaging technique is applied here. In the technique, the
error is averaged in each block, and their squared sum is minimized.
Under the unity gain constraint against the steering vector r(ω), as

g(ω)r(ω) = h(ω)r(ω) = 1, (20)

the objective of the optimization is then

J(ω) =
B

X

b=1

⟨|y(ω, t)|2⟩2t∈Ω(b)

≡
B

X

b=1

(

1

|Ω(b)|
X

t∈Ω(b)

|y(ω, t)|2
)2

, (21)

where b = 1, 2, . . . , B denotes index of the blocks, Ω(b) denotes a
group of frame indices in the b-th block, |Ω(b)| denotes the number
of the frames included in Ω(b), and the target source must be inactive
in all the frames in the blocks. In [3], an iterative update formula
of the complementary beamformers g(ω) and h(ω) based on quasi-
Newton method is proposed. However, this method has many local
minima and its convergence is quite unstable. This is because of the
indefiniteness of the solution. The optimum condition is that all the
transfer function vectors ad(ω) are orthogonal to at least one of g(ω)
and h(ω). A pair of the beamformers g(ω) and h(ω) to satisfy the
complementary condition is not unique.



4.3. Signal Reconstruction with Over-Subtraction
To take advantage of the uncorrelated sources, time-averaging
among neighboring frames is taken for the reference signal. In addi-
tion, for stronger noise-suppression ability with SS, over-subtraction
is conducted, i.e., magnifying the estimate of the noise component
by multiplying it with β > 1, and flooring it to 0 if the estimated
signal power becomes negative:

|y(ω)|2 ≡

8

>

>

<

>

>

:

1
2
·

˛

˛|y(p)(ω)|2 − β ·
˙

|y(r)(ω)|2
¸

˛

˛

1/2

“

if |y(p)(ω)|2 > β ·
˙

|y(r)(ω)|2
¸

”

,

0 (otherwise). (22)
5. PROPOSED ADAPTATION ALGORITHM WITH

ANALYTICAL SOLUTION
5.1. Adaptation Problem as Matrix Optimization
As discussed in Sect. 4.2, the optimization procedure in the conven-
tional method is unstable because of the indefiniteness of the solu-
tion. In this section, we propose a new closed-form solution to the
adaptation problem by obtaining a matrix formed by the two com-
plementary beamformers, without obtaining the beamformers them-
selves. It will be shown that such a matrix optimization is sufficient
and the optimized matrix can give the same nonlinear array signal
processing as the complementary beamformers.

The recovered signal |y(ω)|2 in Eq. (19) can be rewritten as

|y(ω)|2 = (1/4) x(ω)H
n

g(ω)Hh(ω) + h(ω)Hg(ω)
o

x(ω)

= (1/4) x(ω)HG(ω)x(ω), (23)

and optimizing g(ω) and h(ω) is equivalent to optimizing a Hermi-
tian matrix

G(ω) = g(ω)Hh(ω) + h(ω)Hg(ω), (24)
whose rank is two with a positive eigenvalue and a negative one.
Such a matrix G(ω) can be expressed as the combination of the au-
tocorrelation of the training data x(ω, l), l = l1, l2, . . . , lL as

G(ω) =

lL
X

l=l1

c(ω, l)x(ω, l)x(ω, l)H, (25)

where c(ω, l) is the weighting coefficient to be optimized, which is
real valued and can be positive or negative. With this expression, the
optimization of G(ω) is converted into the optimization of c(ω, l).

We utilize the same criterion in Eq. (21) as that in the conven-
tional method. Equation (21) can be rewritten as

J(ω)

=
B

X

b=1

8

<

:

1

|Ω(b)|
X

t∈|Ω(b)|

1

4
x(ω, t)HG(ω)x(ω, t)

9

=

;

2

=

B
X

b=1

8

<

:

X

t∈|Ω(b)|

l=lL
X

l=l1

1

4|Ω(b)| c(ω, l)x(ω, t)Hx(ω, l)x(ω, l)Hx(ω, t)

9

=

;

2

=
B

X

b=1

8

<

:

lL
X

t=l1

lL
X

l=l1

M(b, t)c(ω, l)x(ω, l)Hx(ω, t)x(ω, t)Hx(ω, l)

9

=

;

2

,

(26)

where M(b, t) is an averaging constant determined by the corre-
sponding membership of the data x(ω, t) in the b-th block and is
given by

M(b, t) =

ȷ

1
4|Ω(b)| if t ∈ Ω(b),

0 otherwise.
(27)

In addition, G(ω) must be constrained by the steering vector r(ω) as
in Eq. (20), lead to as

r(ω)HG(ω)r(ω) = 2. (28)

Here J(ω) in Eq. (26) is rewritten in the form of matrix multi-
plication as

J(ω) = c(ω)HK(ω)HMHMK(ω)c(ω), (29)

c(ω) = [c(ω, l1) c(ω, l2) · · · c(ω, lL)]T, (30)

K(ω) =
h

x(ω, l)Hx(ω, t)x(ω, t)Hx(ω, l)
i

tl
, (31)

M = [M(b, t)]bt . (32)
In the above expressions, [x]ij denotes a matrix, the element of
which in the i-th column and the j-th row is specified by the sub-
stituting i and j in x. Also, the constraint of Eq. (28) is rewritten as

c(ω)Hq(ω) = 2, (33)

q(ω) =[r(ω)Hx(ω, l1)x(ω, l1)
Hr(ω), . . . ,

r(ω)Hx(ω, lL)x(ω, lL)Hr(ω)]T. (34)

Minimization of J(ω) in Eq. (29) under the constraint of Eq. (33)
can be accomplished by introducing a Lagrange multiplier γ(ω), and
Lagrangian L(ω) is then given by

L(ω) = c(ω)HK(ω)HMHMK(ω)c(ω) + γ(ω)
n

c(ω)Hq(ω) − 2
o

.

(35)
The optimality condition satisfies

∂L(ω)

∂c(ω)H = K(ω)HMHMK(ω)c(ω) + γ(ω)q(ω) = 0,

∂L(ω)

∂γ(ω)
= c(ω)Hq(ω) − 2 = 0, (36)

which leads to the following optimal solution:

c(ω) =
2

˘

K(ω)HMHMK(ω)
¯+ q(ω)

q(ω)H
˘

K(ω)HMHMK(ω)
¯+ q(ω)

, (37)

where {·}+ denotes the Moore-Penrose pseudo inverse matrix of
the argument. By substituting the obtained weighting coefficients
c(ω, l) for l = l1, l2, . . . , lL in Eq. (25), the optimized filter G(ω) is
obtained.

This formulation is inspired by an extension of principal com-
ponent analysis to kernel method, i.e., the so-called kernel PCA [9].
In fact, by regarding each element x(ω, l)Hx(ω, t)x(ω, t)Hx(ω, l) of
K(ω) as kernel function and substituting an identity matrix in M, the
proposed optimization can be interpreted as a kernel LCMV.
5.2. Factorization of Primary and Reference Path
Although the Hermitian matrix G(ω) obtained in the previous sec-
tion leads to minimization of the squared error, we have to separate
the primary and reference paths from G(ω) for the effective pro-
cessing in Eq. (22). Because of the indefiniteness, g(ω) and h(ω)
themselves cannot be obtained from G(ω). However, the equiva-
lent separate processing of the primary and reference paths can be
accomplished by proper factorization of the Hermitian matrix.

Before the factorization, let us discuss about the primary and
reference paths. Using another matrix filter H(ω) defined as

H(ω) = g(ω)Hg(ω) + h(ω)Hh(ω), (38)
we express the power of the primary and reference signals as

|y(p)(ω)|2 = x(ω)H {g(ω) + h(ω)}H {g(ω) + h(ω)} x(ω)

= x(ω)H {H(ω) + G(ω)} x(ω), (39)
|y(r)(ω)|2 = x(ωH {g(ω) − h(ω)}H {g(ω) − h(ω)} x(ω)

= x(ω)H {H(ω) − G(ω)} x(ω). (40)
Since G(ω) is already computed, all we have to obtain is H(ω) for
separate filtering of the primary and reference signals.

Define the eigenvalue decomposition of the Hermitian matrix
G(ω) as

G(ω) = U(ω)E(ω)U(ω)H, (41)
E(ω) = Diag [e1(ω), · · · , eK(ω)]

(|e1(ω)| ≥ |e2(ω)| ≥ · · · ≥ |eK(ω)|) , (42)

U(ω) = [u1(ω) u2(ω) · · · uK(ω)] . (43)



Since G(ω) should be written as Eq. (24) and its rank should be two,
we regard the later eigenvalues than the third to be 0 as

G(ω) = e1(ω)u1(ω)u1(ω)H + e2(ω)u2(ω)u2(ω)H. (44)
Moreover, g(ω) and h(ω) should be written as

g(ω) = κ1(ω)u1(ω)H + κ2(ω)u2(ω)H, (45)
h(ω) = λ1(ω)u1(ω)H + λ2(ω)u2(ω)H, (46)

where κi(ω) and λi(ω) for i = 1, 2 are unknown constant values.
Substitution of Eqs. (45) and (46) in Eqs. (24) and (38) gives

G(ω) =(κ1(ω)∗λ1(ω) + λ1(ω)∗κ1(ω))u1(ω)u1(ω)H+

(κ1(ω)∗λ2(ω) + λ1(ω)∗κ2(ω))u1(ω)u2(ω)H+

(κ2(ω)∗λ1(ω) + λ2(ω)∗κ1(ω))u2(ω)u1(ω)H+

(κ2(ω)∗λ2(ω) + λ2(ω)∗κ2(ω))u2(ω)u2(ω)H, (47)
H(ω) =(κ1(ω)∗κ1(ω) + λ1(ω)∗λ1(ω))u1(ω)u1(ω)H+

(κ1(ω)∗κ2(ω) + λ1(ω)∗λ2(ω))u1(ω)u2(ω)H+

(κ2(ω)∗κ1(ω) + λ2(ω)∗λ1(ω))u2(ω)u1(ω)H+

(κ2(ω)∗κ2(ω) + λ2(ω)∗λ2(ω))u2(ω)u2(ω)H. (48)

From Eqs. (44) and (47), the following conditions are obtained:

λ1(ω)∗κ1(ω) + κ1(ω)∗λ1(ω) =e1(ω), (49)
λ1(ω)∗κ2(ω) + κ1(ω)∗λ2(ω) =0, (50)
κ2(ω)∗λ2(ω) + λ2(ω)∗κ2(ω) =e2(ω). (51)

In addition, the condition Eq. (20) gives other conditions;

κ1u1(ω)Hr(ω) + κ2u2(ω)Hr(ω) = 1, (52)
λ1u1(ω)Hr(ω) + λ2u2(ω)Hr(ω) = 1. (53)

The conditions in Eqs. (49)–(53) cannot define unique solution of
κ1(ω), κ2(ω), λ1(ω) and λ2(ω) but uniquely gives

κ1(ω)∗κ1(ω) + λ1(ω)∗λ1(ω)

= |u1(ω)Hr(ω)|2e1(ω)2 − e1(ω), (54)
κ1(ω)∗κ2(ω) + λ1(ω)∗λ2(ω)

=
2 − |u1(ω)Hr(ω)|2e1(ω)

u2(ω)Hr(ω)
u1(ω)Hr(ω)e1(ω), (55)

κ2(ω)∗κ2(ω) + λ2(ω)∗λ2(ω)

=

˛

˛

˛

˛

˛

2 −
˛

˛u1(ω)Hr(ω)
˛

˛

2
e1(ω)

u2(ω)Hr(ω)

˛

˛

˛

˛

˛

− e2(ω). (56)

By substituting Eqs. (54)–(56) in Eq. (48), H(ω) is obtained. The
speech enhancement is conducted with substitution of Eqs. (39) and
(40) in the spectral subtraction of Eq. (22).

6. EXPERIMENT
We compared the performance of the proposed adaptation algorithm
with that of two previous methods, namely, a traditional LCMV
beamformer, to gain insights on the effectiveness of non-linear
beamforming, and the conventional iterative adaptation of nonlinear
beamforming of [3], to investigate the quality of the solutions. In
addition, we compared the performance of the conventional adapta-
tion of nonlinear microphone arrays with different initial values to
evaluate its convergence properties.

The observed signals are made in simulation using measured im-
pulse responses at a room with a reverberation time (T60) of 200 ms.
The number of microphone elements is set at two, and the inter-
element spacing is 2 cm. The sampling frequency is 16 kHz, the
frame length 32 ms, the FFT length 2048, and the block size for av-
eraging is 50 frames with a block shift of one frame. The observation
is a convolutive mixture of three speech utterances; one of them is
chosen as the target signal. The target speech signal is assumed to
arrive from the look direction of 0◦ and the interfering noise is as-
sumed to arrive from two directions at −40◦ and 30◦, respectively.
β is set to be 3.

For the conventional iterative adaptation, four conditions of ini-
tialization were evaluated. The condition 1 is the initialization rec-
ommended in the paper [3]: all the 153 pairs of null beamformers
out of those who have equally-sampled 18 different directional nulls

Table 1. Experimental result
Method NRR [dB] CD [dB]
LCMV 0.60 1.09

Condition 1 10.42 6.05
Condition 2 10.33 6.97
Condition 3 5.03 5.19
Condition 4 1.00 4.60

Proposed 9.15 6.98

are used as initial beamformer pairs, and they are optimized in par-
allel; then the best one in each frequency bin is adopted as the op-
timized complementary beamformers. In the condition 2, two null
beamformers given the true look directions of the interfering speech
sources are used as the initial values. In the condition 3, null beam-
formers with directions at −60◦ and 60◦ are used as the initial val-
ues. In the condition 4, random values are used and we evaluated
the average of the 20 trials. Evaluation scores are based on the noise
reduction rate (NRR) [3, 5], to evaluate the noise reduction perfor-
mance, and the cepstral distance (CD) [10], to evaluate the speech
quality objectively.

Table 1 shows the evaluation result. LCMV failed to cancel the
interfering signals because there were too many sources. The poor
performances related to the conditions 3 and 4 show the poor con-
vergence property of the conventional method. The conditions 1 and
2 with the good initial values perform well. However, the former in-
curs a large computational cost and the latter requires very accurate
estimation of the directions of arrival, which is hard to accomplish
with the large number of sources compared with the number of the
sensors. The performance of the proposed method is as good as the
best of the conventional method, yet with a better computational ef-
ficiency due to the analytical solution. Furthermore, the proposed
method does not require any estimation of the initial values. Thus
the proposed algorithm is considered the more reasonable than the
conventional iterative algorithm.

7. CONCLUSIONS
We have proposed a new algorithm to solve optimization problem
in adaptive nonlinear microphone array based on complementary
beamforming. The iterative procedure of the conventional method
based on the quasi-Newton algorithm has poor convergence behav-
ior because of the indefiniteness of the intermediate solutions. We
reformulate the problem as matrix optimization, a solution to which
can be obtained in analytical form. Experimental result shows effec-
tiveness and efficiency of the proposed method. Our future project
is extension of the proposed method to unsupervised optimization
based on independent component analysis.
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