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ABSTRACT

In this paper, we propose a new optimization scheme of the strength
of spectral subtraction based on musical noise assessment via higher-
order statistics. Spectral subtraction often generates artificial distor-
tion (so-called musical noise), and in this paper, we focus on such
musical noise. Musical noise is related to the artificial tonal compo-
nents in remnant noise. Thus, first, we propose a criterion to measure
the generated tonal components based on noise’s kurtosis. This cri-
terion enables us to quantify the amount of generated musical noise.
Next, we proposed a new spectral-subtraction-control scheme based
on the proposed criterion. Finally, we confirm the advantages of the
proposed scheme with subjective evaluation.

Index Terms— Musical noise, Spectral subtraction, Higher-
order statistics, Kurtosis, Noise suppression

1. INTRODUCTION
In recent years, voice communication systems, e.g., TV conference
systems or mobile phones, are used in various situations. Noise sup-
pression techniques are indispensable for the system because noise
often disturbs the smooth communication among users. Thus, a
method that can reduce the noise while maintaining sound quality
is required. Moreover, the method should be robust against the vari-
ation of noise environments.

Spectral subtraction is a single channel noise suppression
method [1]. It is one of the most popular noise reduction tech-
niques owing to its simple algorithm and good noise suppression
performance. Although spectral subtraction is used in many noise
suppression systems [2, 3] , it has a critical and inherent problem.
The problem is that sound quality degrades due to musical noise gen-
erated via nonlinear subtraction procedures. Musical noise consists
of tonal remnant noise components [4], which are significantly dis-
agreeable to the ear. There are many countermeasures and improved
methods [5] against musical noise because it has been regarded as
the biggest problem of spectral subtraction. However, we have no
general measure of the amount of musical noise. Moreover, it is well
known that the degree of musical noise varies by noise environment;
this leads to difficulty of parameter settings in spectral subtraction.
Therefore, at first, we construct a new mathematical metric of the
amount of musical noise based on higher-order statistics. Secondly,
we propose a new scheme to automatically determine the strength
of spectral subtraction processing with the proposed measurement.
Owing to these propositions, we can measure and control the quality
of the processed signal, and optimize the strength of spectral sub-
traction processing. Finally, we have subjective evaluation to show
the effectiveness of this approach.

This work was partly supported by MIC Strategic Information and Com-
munications R&D Promotion Programme in Japan.
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Fig. 1. (a) Observed signal spectrogram, (b) Processed signal spec-
trogram.

2. STATISTICAL MEASUREMENT OF MUSICAL NOISE
2.1. Spectral subtraction
At first, we analyze spectral subtraction processing to build up a
measure that indicates amount of musical noise. Although vari-
ous types of spectral subtraction methods are proposed, we address
single-channel spectral subtraction in the power domain, which is
used for any speech enhancement [6].

Let the corrupted speech signal o(t) be represented as
o(t) = s(t) + n(t), (1)

where s(t) is a clean speech signal and n(t) is a noise signal. This
processing is conducted on a frame-by-frame basis. The short-time
Fourier transform (STFT) is used and the previous model can be
rewritten as

O(k,m) = S (k,m) + N(k,m), (2)
where k denotes the frequency subband and m is the frame index. In
spectral subtraction, noise reduction is achieved by subtracting the
power spectrum of the estimated noise from the power spectrum of
the noisy observation. This procedure is given by

Y(k,m) =
√
|O(k,m)|2 − β · Em

[|N(k,m)|2] · e j arg(O(k,m)), (3)

where Y(k,m) is an estimated speech signal, β is a subtraction co-
efficient and E[·] is an expectation operator of · with respect to m.

2.2. Relationship between kurtosis and musical noise
Spectral subtraction often generates isolated power spectral compo-
nents (see Fig. 1 (a) and (b)). In this paper, we define the musical
noise as the generated audible isolated spectral components through
processing. Thus we speculate that the amount of musical noise is
highly related to the number of isolated components and the isolated
level of them.

Hence, secondly, we adopt kurtosis to quantify the isolated spec-
tral components, and focus on the kurtosis changes. Since isolated
spectral components have relatively sufficient power, we would hear
them as tonal sound, which results in musical noise. Therefore, it is
expected that the measurement of the amount of prominence of tonal
components enables us to measure or quantify the amount of musi-
cal noise. However, such a measurement is extremely complicated,



so instead we introduce a simple statistical estimate, i.e., kurtosis.
This adoption allows us to obtain the characteristics about tonal

components. The adopted kurtosis can evaluate the width of the
probability density function (p.d.f.) and the weight of their skirts.
We could say that kurtosis can evaluate the percentage of tonal com-
ponents in total components. Bigger value indicates a signal with
heavy skirt; it means that a signal has a lot of tonal components.
Also kurtosis is calculated in concise algebraic form. Thus, kurtosis
is a suitable measure for the tonal components in computers.

Kurtosis is defined as
kurt =

µ4

µ2
2 , (4)

where kurt denotes kurtosis and µn is the n-th order moment which
is given by

µn =

∫ ∞

0
xnP(x) dx. (5)

Here, P(x) is p.d.f. of the signal. We consider the spectral subtrac-
tion in power spectral domain, so the integral range is only positive.

Although we can measure the number of the tonal components
by kurtosis, note that kurtosis itself is not enough to measure the
musical noise. This is obvious in that kurtosis of some unprocessed
signals, e.g., speech signals, is also high, but we don’t recognize
speech as musical noise. Since we want to check only the musi-
cal noise components, it should not consider genuine tonal compo-
nents. In order to address the above-mentioned aim, we focus on
the fact that musical noise is generated only in artificial signal pro-
cessing. Hence, we turn our attention to change of kurtosis between
before/after signal processing.
3. RESULTANT KURTOSIS IN SPECTRAL SUBTRACTION
We derive the relationship between kurtosis and the strength of spec-
tral subtraction. Moreover, the relationship between kurtosis of pro-
cessed signal and kurtosis of unprocessed signal are revealed.
3.1. Gamma distribution modeling
We utilize the gamma distribution as a model of speech or noise
signal [7, 8]. The gamma distribution have a lot of useful mathemat-
ically attributes which are derived from the gamma function.

The p.d.f. of the gamma distribution is written as

P(x) =
1

Γ(α) θ α
· x α−1 e−

x
θ , (6)

where x ≥ 0, α > 0 and θ > 0. Also α denotes the shape parameter
and θ is the scale parameter. The Gamma function is defined by

Γ (α) =
∫ ∞

0
xα−1e−x · dx. (7)

Note that the gamma function has a famous functional equation as
follows;
Γ(α)= (α−1)Γ(α−1)= (α−1)(α−2)Γ(α−2)= (α−1) · · · (α− j)Γ(α− j). (8)

Hereafter, in this paper, let C = 1/[Γ(α) θ α]. If α = 1, this is the
exponential distribution. It is well known that the average of the
gamma distribution is given by

E [P(x)] = αθ, (9)
where E[·] is an expectation operator. The gamma distribution mod-
eling is the estimation of the shape and the scale parameters from
the raw input signal. In this paper, we use the maximum likelihood
estimation method for estimating two parameters α and θ, as follows,

α̂ =
3 − γ +

√
(γ − 3)2 + 24γ
12γ

, (10)

θ̂ =
E [ x ]
α̂
, (11)

where γ = log( E [x] ) − E [ log x ] (see Refs. [9, 10]).
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Fig. 2. Shape parameter and kurtosis of the real-world signals.

3.2. Kurtosis of modeling signal
In this way of modeling by the gamma distribution, kurtosis is deter-
mined by the shape and the scale parameters as below. At first, we
represent the 4th-order moment as

µ4 =

∫ ∞

0
x4P(x) dx =

∫ ∞

0
x4
[
C · xα−1e−

x
θ

]
dx.

Here, let X = x/θ, this moment can be rewritten as

µ4 = C · θ α+4
∫ ∞

0
X(α+4)−1e−XdX = C · θα+4 · Γ(α + 4). (12)

Next, by the same manner, 2nd-order moment can be designated as

µ2 =

∫ ∞

0
x2P(x) dx = C · θα+2 · Γ(α + 2). (13)

Consequently, using (8), we can obtain kurtosis of the modeled raw
signal by the gamma distribution as follows.

kurtorg =
µ4

µ 2
2

=
Cθα+4 · Γ(α + 4)[
Cθα+2 · Γ(α + 2)

]2 = (α + 2)(α + 3) · Γ(α + 2)
Cθα · Γ(α + 2)2

=
[Γ(α)θα] (α + 2)(α + 3)
θαα(α + 1) · Γ(α)

=
(α + 2)(α + 3)
α(α + 1)

. (14)

Figure 2 indicates the values of the shape parameter and kur-
tosis of the real-world noise, in the real-world noise database of
Japan Electronics and Information Technology Industries Associa-
tion (JEITA). This figure shows the shape parameter is about 0.1 to
0.6, and kurtosis is about 10 to 50 in the real-world noise.
3.3. Logarithmic kurtosis ratio
In this paper, we propose a new metric of logarithmic kurtosis ratio
(log kurtosis ratio) as a measure of the amount of generated musical
noise. We use the average of observed signal power spectrum as es-
timated noise power spectrum, so the amount of subtraction is β ·αθ,
using (9). To subtract the estimated noise power spectrum in each
frequency band can be regarded as deforming of the p.d.f., which is
the parallel translation of the p.d.f. to zero power direction. As a
result, the probability of the negative power component arises. To
avoid this, such a negative component probability is replaced to zero
(so-called flooring technique). The resultant p.d.f. of the processed
signal is written as

P(x) =

C · (x + β · αθ)α−1 e−
x+β·αθ
θ (x > 0) ,

C
∫ β·αθ

0
xα−1e−

x
θ dx (x = 0) .

(15)

Here we can approximate (x+βαθ)α−1 in (15) by Taylor expansion as

(x+βαθ)α−1≈ xα−1+βαθ(α−1)xα−2+
(βαθ)2

2
(α−1)(α−2)xα−3. (16)

Using (15) and (16), we have

µ4 ≈ Ce−αβ
[∫ ∞

0
x(α+4)−1e−

x
θ dx+βαθ(α−1)

∫ ∞

0
x(α+3)−1e−

x
θ dx

+
(βαθ)2

2
(α−2)(α−1)

∫ ∞

0
x(α+2)−1e−

x
θ dx
]
. (17)
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Fig. 3. Block diagram of proposed scheme.

Here we normalize the expectation of the gamma distribution with
using (9), θ = 1/α. Also, with (12), the 4th-order moment can be
represented by
µ4 ≈ Ce−αβ

[
θα+4Γ(α+4) + β(α−1)θα+3Γ(α+3)

+
β2

2
(α−2)(α−1)θα+2Γ(α+2)

]
. (18)

Using the first term of the right-hand side in (16), maximum value
of the 2nd-order moment is estimated as below,

µ2 =

∫ ∞

0
x2
[
C(x + β · αθ)α−1e−

x+βαθ
θ

]
dx ≤ Ce−αβθ α+2Γ(α + 2). (19)

Thus, kurtosis of the processed signal can be given as

kurtss≥
eαβ

α(α+1)

{
(α+2)(α+3)+βα(α+2)(α−1)+(βα)2

2
(α−3)(α−1)

}
. (20)

From (20), the kurtosis depends on only α and β, and its behavior
is exponential. Therefore, it is considered reasonable and proper
introducing the following log kurtosis ratio:

log
[

kurtss

kurtorg

]
= α·β+log

{
1 +
βα(α−1)

(α+3)
+

(βα)2(α−2)(α−1)
2 (α+2)(α+3)

}
. (21)

Note that log kurtosis ratio is a monotonically increasing function
of α and β. Thus, it depends on the distribution of the original sig-
nal and the strength of spectral subtraction. Also log kurtosis ratio
is confirmed by our experience, i.e., in spectral subtraction, using
the smaller kurtosis signal (e.g., white Gaussian) set up more musi-
cal noise than using the bigger kurtosis signal (e.g., speech signal).
These prospective log-kurtosis-ratio behaviors are confirmed by ex-
periment in Sect. 5.

4. NEW SCHEME TO CONTROL AMOUNT OF
GENERATED MUSICAL NOISE BASED ON LOG

KURTOSIS RATIO
In this section, we propose a new scheme to control the amount of
generated musical noise for any noise with a unified criterion that is
log kurtosis ratio. This control is achieved by determining the proper
subtraction coefficient automatically based on the criterion. In the
conventional method, we have to experimentally select the proper
subtraction coefficient about the amount of generated musical noise.
This is very heuristic and not versatile, e.g., different researchers
would select different subtraction coefficients because of the absence
of general criteria about musical noise.

The processing flow of the proposed method can be schematized
in Fig. 3, and the procedures are described as follows.

[step 1] At first, we set up the musical noise score as required level
of maximum amount of generated musical noise. Also initial
subtraction coefficient is set to a small value (e.g. we use 0.1).

[step 2] Next, input signal is processed as a trial.
[step 3] We calculate log kurtosis ratio using unprocessed and pro-

cessed signals kurtosis.
[step 4] Finally, check the log kurtosis ratio, which is calculated

back from the musical noise score and actual measurement
value of the log kurtosis ratio. If actual value is less than the

Table 1. Subjective evaluation conditions
Length 10 s.
Noise 4-type noise from JEITA

Sound Speech 4 sentences
from Japanese News
Article Sentences

Spectral Noise estimation Pause interval
subtraction average power spectrum

set up Subtraction coefficient {0, 0.4, 0.8, 1.2, 1.6, 2.0}
Flooring 0
Test type Open

Evaluate Criterion Musical noise score
Examinees 8 males and 1 female
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Fig. 4. Relationship between log kurtosis ratio and subtraction coef-
ficient.

calculated-back one, we go back in [step 2] with turning the
subtraction coefficient up (e.g. add 0.1).

The proposed scheme can maximize the subtraction coefficient auto-
matically while keeping the requested noise quality, i.e., less musical
noise. Also this scheme allows us to optimize β for each noise envi-
ronment.

5. SUBJECTIVE EVALUATION
5.1. Experimental condition
We conduct a subjective evaluation to bring out the relationship be-
tween log kurtosis ratio and the amount of generated musical noise,
and we confirm the efficacy of the proposed scheme. In this ex-
periment, first, let examinees rate the amount of generated musical
noise in five steps (0: natural, 1, · · · , 4: harmful). We call this rat-
ing musical noise score. If examinees feel the stimulus sound as
more musical-noise-like, a bigger value is rated to the musical noise
score. Now examinees have heard known musical noise as a refer-
ence in advance. The evaluation conditions are listed in Table 1. In
addition, signals used in this experiment cover possible kurtosis in
the real-world, and index in ascending sequence Noise1, · · · , Noise4
(c.f., Noise1: station noise, Noise2: crowd noise, Noise3: exhibition
hall noise, Noise4: elevator hall noise). We depict the relationship
subtraction coefficient and log kurtosis ratio in Fig. 4. From this fig-
ure, we can see that log kurtosis ratio is increasing with increase of
subtraction coefficient. Note that log kurtosis ratio varies for every
noise type even in the same subtraction coefficient. This means that
log kurtosis ratio accurately depends on noise type, and this result is
consistent with the theorem mentioned in Sect. 3.
5.2. Evaluation result
The result of the subjective evaluation is illustrated in Figs. 5, 6 and 7.
Figure 5 shows the interesting various relationships. In each sub-
traction coefficient, the signal that has bigger kurtosis (e.g., Noise4)
is rated in small musical noise score. As well, smaller kurtosis
signal (e.g., Noise1) is rated in large musical noise score. It should
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be mentioned that musical noise score varies as noise environment
(original signal’s kurtosis) changes even when we fix the subtraction
coefficient; this is a new finding. Compared with Figs. 4 and 5, the
results of this experiment mean that log kurtosis ratio is strongly
related with musical noise score.

Figures 6 and 7 are the rated scatter plot in which bubble size
represents the number of answers. From these results, we can see
the strongly correlated relationship between log kurtosis ratio and
musical noise score. Actually, the correlation coefficient is 0.84 in
Fig. 6. On the other hand, Fig. 7 depicts an appearance of scattering
of musical noise score from the view point of subtraction coefficient
β. The results show that the fixed subtraction coefficient leads to a
widely ranging musical noise score compared with the case of fixed
log kurtosis ratio. This variation of musical noise score depends on
the noise environment. All of this amounts to saying that the optimal
subtraction coefficient from the viewpoint of quality is different for
each noise environment. Besides we can determine the relationship
(musical noise score)= 2.235×(log kurtosis ratio) from regression
analysis. Finally, in Fig. 8, we can obtain smaller variance of musi-
cal noise score by using the proposed criterion. On the other hand,
bigger variance of musical noise score is obtained from the conven-
tional criterion (i.e., subtraction coefficient). The variations of musi-
cal noise score are bigger in the conventional criterion, especially on
the commonly used value of the subtraction coefficient in practice.
For instance, the variation of musical noise score is approximately
1.4 when the subtraction coefficient equals 2. It is to say that the
conventional criterion cannot adapt to various noise environments.
On the other hand, almost all the variations of musical noise score
are smaller in the proposed log kurtosis ratio. Consequently we con-
clude that the proposed criterion can control the amount of generated
musical noise and automatically adapt to the noise environment.

6. CONCLUSION
In conclusion, we proposed a log kurtosis ratio that can measure the
amount of generated musical noise and a new criterion to control
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Fig. 7. Relationship between subtraction coefficient and musical
noise score.
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processing strength of spectral subtraction based on the log kurtosis
ratio. The proprieties of these propositions are confirmed by subjec-
tive evaluation. The both propositions can achieve spectral subtrac-
tion suitable for practical use.
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