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ABSTRACT

A hands-free system with conventional independent component
analysis (ICA) should update the separation filter constantly to fol-
low the hourly environment change. However, when the separation-
filter is updated in the period where the user absent, ICA often yields
an undesired separation filter. In this paper, we propose a novel al-
gorithm of kurtosis-based voice activity detection (VAD) for an
appropriate ICA optimization. In this algorithm, first, closed-form
2nd-order ICA (SO-ICA) is performed for providing the roughly
separated signals, and based on the kurtosis of their signals, VAD is
processed. Next, when the current time period is voiced block, the
higher-order ICA’s re-optimization is applied using the previously
obtained SO-ICA’s solution as the initial filter; this results in a fast
and high convergence. The effectiveness of the proposed method is
shown in a simulation experiment for blind spatial subtraction array
with the proposed method.

Index Terms— Independent component analysis, blind source
separation, voice activity detection, closed-form solution

1. INTRODUCTION
Recently, many studies of blind source separation (BSS) based on in-
dependent component analysis (ICA) have been conducted [1, 2, 3].
BSS is the unsupervised filtering approach taken to estimate origi-
nal source signal using only information of mixed signals observed
in each input channel. Owing to the attractive features of ICA-based
BSS, this technique is applicable to creation of a noise-robust hands-
free speech recognition and speech communication system.

The conventional ICA should update the separation filter con-
stantly to follow the hourly environment change. In practical use,
however, almost all the time periods do not contain a user’s ut-
terance. Therefore, the continuous separation-filter updating is a
burden to the hands-free system. In addition, if we conduct the
separation-filter updating in the time period in which a user does
not exist, ICA often causes unstable behavior.

In this paper, we propose a method in which separation-filter
updating is conducted only when a user exists. First, closed-form
2nd-order ICA (SO-ICA) [3] is performed for providing the roughly
separated signals periodically. Next, based on the kurtosis of the
roughly separated signals, voice activity detection (VAD) is pro-
cessed. In the voice active time period, the higher-order ICA’s re-
optimization is applied using the previously obtained closed-form
SO-ICA’s solution as the initial filter; this results in a fast and high
convergence. The effectiveness of the proposed method is revealed
via performing a simulation experiment of blind spatial subtraction
array (BSSA) [4] with the proposed method under noisy conditions.
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2. MIXING PROCESS
In this study, the number of microphones is K and the number of
multiple sound sources is L. By applying the short-time discrete-
time Fourier transform frame-wisely, we can express the observed
signals, in which multiple source signals are linearly mixed, as fol-
lows in the time-frequency domain:

X( f , t) = A( f )S( f , t), (1)
where X( f , t) = [X1( f , t), . . . , XK( f , t)]T is the observed signal vec-

tor, S( f , t) = [S 1( f , t), . . . , S L( f , t)]T is the source signal vector.
Also, A( f ) is the mixing matrix, which is complex-valued because
we introduce a model to deal with the relative time delays among
the microphones and room reverberations.

3. CONVENTIONAL METHODS
3.1. Frequency-domain ICA-based BSS
3.1.1. Separation process

In frequency-domain ICA-based BSS, we perform signal separation
using the complex-valued unmixing matrix W( f ), so that the L time-
series outputs Y( f , t) = [Y1( f , t), . . . , YL( f , t)]T become mutually in-
dependent; this procedure can be given as

Y( f , t) =W( f )X( f , t). (2)
Various ICA methods for optimizing W( f ) have been proposed, and
these are classified into nonclosed-form and closed-form ICAs.

3.1.2. Nonclosed-form higher-order ICA (HO-ICA)

In the nonclosed-form HO-ICA, the optimal W( f ) is obtained by the
following iterative equation:

W[m+1]
HO ( f ) = µ

[
I −

〈
Φ(Y( f , t))YH( f , t)

〉
t

]
·W[m]

HO( f ) +W[m]
HO( f ), (3)

where XH denotes hermitian transpose of matrix X, µ is the step-size
parameter, I is an identity matrix, [m] is used to express the value of
the m-th step in the iteration, 〈·〉t denotes a time-averaging operator,
and Φ (Y( f , t)) is the appropriate nonlinear vector function [1].

3.1.3. Closed-form 2nd-order ICA

This subsection briefly describes the overview of signal processing
in the closed-form SO-ICA. First, we obtain the correlation matrices
with different time periods as

Rti ( f ) =
〈
X( f , t)XT( f , t)

〉
t∈ti
, (4)

where 〈·〉t∈ti denotes the time-averaging operator over specific time
duration ti, and i (= 1, 2, . . .) represents an index of time-averaging
block. Next, we apply singular value decomposition (SVD) to a su-
perposition of Rti ( f ), which is represented as∑

i

Rti ( f ) = U( f )diag(λ1, . . . , λK)UH( f ), (5)



where λk (k = 1, . . . ,K) are the eigenvalues, diag(λ1, . . . , λK) de-
notes the diagonal matrix that includes the eigenvalues, and U( f ) is
the matrix consisting of the eigenvectors. Next, we obtain a full-rank
decomposition for pseudo-inverse of

∑
i Rti ( f ) as follows


∑

i

Rti ( f )


+

= L( f )LH( f ), (6)

L( f ) = U( f )diag
(

1
√
λ1
, . . . ,

1
√
λK

)
. (7)

If the covariance of the sources S( f , t) in ti is negligible, it can be
proved that every LH( f )Rti ( f )L( f ) for any i shares the same eigen-
vectors, and this is given via SVD form as

LH( f )Rti ( f )L( f ) = T( f )diag(σ1(ti), σ2(ti), . . .)TH( f ), (8)
where σk(ti) are the eigenvalues for a specific time block ti, and T( f )
denotes the matrix consisting of shared eigenvectors that are inde-
pendent of time-block index i. Therefore, for any i, the simultaneous
diagonalization of Rti ( f ) can be achieved as follows:

TH( f )LH( f )Rti ( f )L( f )T( f ) = diag(σ1(ti), σ2(ti), . . .), (9)
and this means that the optimal separation filter matrix in the 2nd-
order sense is given by

WSO( f ) = (L( f )T( f ))H. (10)
Computational cost in the closed-form SO-ICA is very small. In

fact, the whole computational cost in the closed-form solution is al-
most the same as those for 1 or 2 iterations in the nonclosed-form
HO-ICA [5]. However, the separation performance of the closed-
form SO-ICA is inferior to that of the nonclosed-form HO-ICA.
Also, the closed-form SO-ICA provides a good initial filter, and
the nonclosed-form HO-ICA can update the separation filters from
the advantageous status. This enable us to reduce the computational
complexities without deteriorating the separation performance [5].
3.2. Blind spatial subtraction array [4]
In a hands-free system in a real environment, it is required to extract
a target speech and reduce noises that cannot be regarded as point
sources. Although the conventional ICA-based BSS could work es-
pecially in point source mixing, it is difficult to apply ICA to non-
point source noise reduction. BSSA has been proposed to extract
a target speech in such a case. In BSSA, ICA is partly utilized as
a noise estimator because of the fact that ICA is proficient in noise
estimation rather than target estimation [4]. BSSA consists of two
paths: a delay-and-sum array based primary path as the target speech
enhancing part, and an ICA-based reference path as the noise esti-
mation part (see Fig. 1). Based on the spectral subtraction method,
the BSSA’s output YBSSA( f , t) can be given by

YBSSA( f , t) =



{
|YDS( f , t)|2 − α · |Z( f , t)|2

} 1
2

(if |YDS( f , t)|2 − α·|Z( f , t)|2 ≥ 0),
β · |YDS( f , t)| (otherwise),

(11)

where YDS( f , t) is the output signal from the primary path, Z( f , t)
is the output signal from the reference path, α represents over-
subtraction parameter, and β denotes the flooring parameter.

4. PROPOSED METHOD
4.1. Motivation and strategy
In an actual environment, a hands-free system with ICA should up-
date the separation filter constantly to follow the rapid environmental
change. This also holds for a hands-free system with BSSA utilizing
ICA as a noise estimator. However, speech application, e.g., hands-
free spoken-oriented guidance, is confronted with almost all the time
periods where the user is absent and only noise exists. In such a time
period, the desired separation filter cannot be optimized and, in fact,
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Fig. 1. Block diagram of BSSA.
an unstable separation filter appears. For these reasons, the separa-
tion filter should be optimized only when the user exists. Therefore,
it is indispensable to detect the time periods where a user exists, i.e.,
voice active time periods. Here, VAD should work correctly under
noisy conditions. In addition, when the current time period becomes
a voice active period just after a noise-only period, we are requested
to rebuild the separation filter as fast as possible.

For these two requirements, we newly propose the following
method. In this method, the closed-form SO-ICA is performed for
providing the roughly separated signals and enhances the speech sig-
nal. Thus VAD is processed correctly under noisy conditions. Also,
when the current time period becomes a voice active period just af-
ter a noise-only period, nonclosed-form HO-ICA’s re-optimization
is performed with using the closed-form SO-ICA’s solution as the
initial filter. As a result, we rebuild the separation filter quickly.

4.2. Kurtosis-based voice activity detection
Kurtosis is an indicator that represents non-Gaussianity of a random
variable. As probability density function (PDF) of a signal diverges
from Gaussian distribution, this kurtosis is apart from zero. The
kurtosis of a signal y(t) is defined by

kurt(y(t)) =
〈
y4(t)

〉
t

[〈
y2(t)

〉
t

]−2
− 3. (12)

In our application, the noise signal’s kurtosis is assumed to be nearly
zero. This is due to the fact that PDF of mixed signal of various
kinds of noise becomes Gaussian distribution based on the central
limit theorem. In contrast, the speech signal’s PDF is expressed by
Laplace distribution, and this kurtosis tends to be higher than the
noise signal’s kurtosis [6].

In the proposed method, first, the closed-form SO-ICA is per-
formed for providing the roughly separated signals periodically.
Next, based on kurtosis of roughly separated signals, VAD is pro-
cessed. In the time period where both target speech and noise exist,
the roughly separated signals provided by the closed-form SO-ICA
become a speech-enhanced signal and noise-estimated signal. In
general, the speech signal’s kurtosis is different from the noise sig-
nal’s kurtosis owing to difference of distribution shapes of their
PDFs. Therefore, a difference among kurtosis of output signals is
caused. Otherwise, when only noise exists, both roughly separated
signals provided by the closed-form SO-ICA are noise-estimated
signals, and their kurtosis values are almost the same. Based on this
difference, the proposed method determines whether the user exists
or not. In the proposed method, the evaluation score that shows the
difference among kurtosis of roughly separated signals is defined. In
the case of L = 2, the evaluation score is written as

Ks(b) =
〈
|kurt(real(Y (SO)

1 ( f , t, b))) − kurt(real(Y (SO)
2 ( f , t, b)))|

〉
f (25)
,

(13)

where b (= 1, 2, . . .) denotes the index of time durations, Y (SO)
l ( f , t, b)

denotes the roughly separated signal provided by the closed-form
SO-ICA in time duration b, l is the channel index, 〈·〉 f (25) denotes a
frequency-averaging operator of the top 25 kurtosis difference, and
real(·) expresses the real part of ·. This evaluation score can avoid
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the permutation effect in VAD because this score is based on the dif-
ference among kurtosis of roughly separated signals, which is cal-
culated in each frequency bin (we call kurtosis difference). Also,
since speech signals are often sparse, some frequency sub-bands of
speech signal have few powers. In this score, however, we average
the top 25 of kurtosis difference. Thus we can extract only frequency
sub-bands where speech signals have a lot of power.

4.3. Real-time processing
The proposed method should be worked in real-time for practical
use. Thus, we construct real-time algorithms of the conventional
ICA and the proposed method (see Figs. 2 and 3).

In the conventional real-time algorithm, nonclosed-form HO-
ICA’s separation filter is updated constantly without VAD. In this
paper, the length of the one time duration is set to be 3 seconds.
First, the input data of a time duration b is buffered. Secondly, the
nonclosed-form HO-ICA’s separation filter is optimized using the
buffering data in the next time duration b+ 1. The optimized separa-
tion filter is applied to the data in the next time duration b+2. This is
due to the fact that the filter update in the nonclosed-form HO-ICA
requires substantial computational complexities and cannot provide
the optimal separation filter for current time period data.

In the proposed method, the nonclosed-form HO-ICA optimizes
the separation filter while a user exists. The optimization process is
the same as the conventional method.

4.4. Process flow of proposed method
Figure 4 shows process flow of proposed method. The details of the
proposed method is described below.
[Step 1: Observed signal segmentation]
Split up the observed signal into fixed length segments. X( f , t, b) is
the split signals.
[Step 2: Source separation by closed-form SO-ICA]
Separate the observed signal via closed-form SO-ICA in the each
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time duration by Step 1. This can be represented by
YSO( f , t, b) =WSO( f , b)X( f , t, b), (14)

where WSO( f , b) is the closed-form SO-ICA’s separation filter opti-
mized for time duration b, and YSO( f , t, b) denotes the roughly sep-
arated signals provided by the closed-form SO-ICA in time duration
b.
[Step 3: Calculation of kurtosis]
Calculate the evaluation score Ks(b) of the roughly separated signals
obtained by Step 2.
[Step 4: To determine whether voice is active or not]
Determine whether voice is active or not based on Ks(b) calculated
in Step 3 as follows:

Voice active time (if Ks(b) ≥ Kth),
Non voice active time (otherwise).

(15)

[Step 5: Optimization of the nonclosed-form HO-ICA’s separa-
tion filter]
Based on the result of Step 4, the nonclosed-form HO-ICA’s opti-
mization is processed only when current time period is voiced block.
This optimization depends on Kth and Ks(b).
[Pattern 1: Ks(b) ≥ Kth,Ks(b− 1) < Kth] In this case, block b is the
time duration where the user start to talk. Thus, in the time duration
b + 1, the nonclosed-form HO-ICA’s re-optimization is performed
with using the obtained closed-form SO-ICA’s solution in Step 2 as
the initial filter: this result in a fast convergence [5]. This can be
given by

W[0]
HO( f , b) =WSO( f , b), (16)

W[m+1]
HO ( f , b) =µ

[
I −

〈
Φ(Y( f , t, b))YH( f , t, b)

〉
t

]
·W[m]

HO( f , b)

+W[m]
HO( f , b). (17)

The optimized separation filter WHO( f , b) is applied to the data in the
time duration b + 2.

Y( f , t, b + 2) =WHO( f , b)X( f , t, b + 2). (18)
In the time duration b, the optimal separation filter is not provided.
Thus, the separation is performed by the initial filter given in ad-



vance.
Y( f , t, b) =Winit( f )X( f , t, b). (19)

[Pattern 2: Ks(b) ≥ Kth,Ks(b − 1) ≥ Kth] This is speech contin-
ued case. In this case, the nonclosed-form HO-ICA’s optimization is
continued. Thus, the initial filter for HO-ICA are given by

W[0]
HO( f , b) =WHO( f , b − 1). (20)

In the time duration b + 1, the nonclosed-form HO-ICA’s re-
optimization is performed the same as Eq.(17). The optimized
separation filter WHO( f , b) is applied to the data in the time duration
b+ 2 the same as Eq.(18). If the case of Ks(b− 2) < Kth, the optimal
separation filter is not provided in the current duration b. Thus,
the separation is performed by the obtained closed-from SO-ICA’s
solution in the time duration b − 1.

Y( f , t, b) =WSO( f , b − 1)X( f , t, b) (if Ks(b − 2) < Kth),
Y( f , t, b) =WHO( f , b − 2)X( f , t, b) (otherwise).

(21)

[Pattern 3: Ks(b) < Kth] In Pattern 3, time duration b is not voiced
block. It can be consider the following case: Ks(τ) ≥ Kth; τ ∈
(b − k, b) or not. In the first case, it remain possible that the same
speaker use this application in the moment time durations after that.
Thus, the nonclosed-form HO-ICA’s optimization is continued the
same as Pattern 2. In the latter case, the nonclosed-from HO-ICA’s
optimization is not conducted, and the current separation filter is re-
set.

5. EXPERIMENTS AND RESULT
5.1. Experimental setup
We assess the effectiveness of the proposed method by performing
a simulation experiment for BSSA with the proposed method. We
carry out experiments in a real reverberant room illustrated in Fig. 5.
In this experiment, we use the following 8 kHz sampled signals:
speech signals, which are assumed to arrive from different direc-
tions, (θ1, θ2), are outputted from loudspeakers in the different time
period, and the noise is actually-recorded railway-station noise from
36 loudspeakers. We use speech signals by 2 males and 2 females.
Thus, 12 combinations of speakers are used in the experiment. The
source signals are mixtures with 210-second noise signal and 15-
second two target signals, which simulate the user existence time
period and non-existence time period. The input SNR of test data is
set to 6 dB. The DFT size is 1024, and frame shift length is 256. The
block size for calculation of each Rti ( f ) in the closed-form SO-ICA
is set to 1 second. The initial filter is the null beamformer [2]. In this
experiment, real-time algorithms in Sect. 4.3 are used. In each time
period, the number of iterations in the nonclosed-form HO-ICA part
is 30. Also, α = 2.0, β = 0.03 was used for BSSA. We use noise re-
duction rate (NRR), which is defined as the output SNR in dB minus
the input SNR in dB, for evaluation [2].

5.2. Experiments result
Figure 6 shows the NRR that corresponds to noise estimation by
the nonclosed-form HO-ICA in BSSA with the proposed method or
the conventional method in each time period. We can see that NRR
of the proposed method overtakes that of the conventional method,
especially for early time period of the speech. Therefore, in the
time period where a user does not exist, the proposed method pre-
vents from degrading the separation filter by VAD. When the cur-
rent time period becomes voiced block, the nonclosed-form HO-
ICA’s re-optimization is performed using the previously obtained
SO-ICA’s solution as the initial filter. Also, we can confirm the same
pattern in Fig. 7, which shows the NRR of BSSA with the proposed
method or the conventional method in each time period. Improve-
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ments of more than 6 dB are achieved in the early parts of voiced
periods, which is an obvious and significant improvement for hu-
man hearing. These results reveal the effectiveness of the proposed
method in an actual environment.

6. CONCLUSIONS
In this paper, we propose a novel algorithm of VAD based on kurto-
sis and closed-form SO-ICA. This is a method in which separation-
filter updating is conducted only when a user exists. Experimental
results reveal the effectiveness of the proposed method by perform-
ing a simulation experiment for BSSA with the proposed method.
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