
A SCALABLE FRAMEWORK FOR MULTIPLE SPEAKER LOCALIZATION AND
TRACKING

Nilesh Madhu and Rainer Martin

{firstname}.{lastname}@rub.de
Institute of Communication Acoustics (IKA), Ruhr-Universität Bochum

44780 Bochum, Germany.

ABSTRACT

In this paper we present a novel, scalable approach to the localiza-
tion and tracking of multiple speakers using microphone arrays. The
approach is capable of localizing sources both in non-competing and
in concurrent situations, and is based on the disjointness of speech
in the short-time discrete frequency domain (STFD). The algorithm
operates on a narrowband localization cost function in the STFD and
yields an estimate of the speaker activity per time frame b by apply-
ing a Mixture of Gaussians (MoG) fit to the narrowband localization
estimates. The advantages of the proposed method are manifold: it
allows us to use a coarser search grid for the cost function evalua-
tion, without compromising on the location accuracy; it allows for a
soft-decision on the number and position of sources on the fly; the
framework is scalable to multi-array systems; and it can also serve
as a base framework for enhancement algorithms. In principle, this
approach is not specific to speakers and will work for any source
combination provided they exhibit some temporal and spectral dis-
jointness.

Index Terms— Localization, Mixture of Gaussians, Tracking,
Multi-talker localization, SRP

1. INTRODUCTION

In multichannel acoustic signal processing, source localization is an
important component, commensurate with its number of applica-
tions such as speech processing, industrial acoustics and sonar to
cite a few. These applications are different in that the sources in
each case may be broadband or narrowband, may evince spectral
or temporal disjointness or both, may show sparsity in the temporal
or spectral domain, etc. Depending upon the source characteristics,
which are usually known a priori, localization algorithms need to
be appropriately tailored for the purpose. The contribution here fo-
cusses on speaker localization. Under certain conditions, which shall
become clear subsequently, the proposed approach may be extended
to other source combinations as well.

Localization is done either by the direct approaches (cost func-
tion computed over a set of preselected candidate locations) or the
indirect approaches (estimate the inter-sensor time delays of arrival
(TDOA) and find the source locations by non-linear optimization
and parameter fitting). When more than two microphones are avail-
able, the approach of choice is frequently the steered response power
(SRP) [1] algorithm (and its variants) due to its ease of implementa-
tion and scalability in terms of addition of new sensors and selection
of the candidate locations (see e.g., [2]). These algorithms are usu-
ally implemented in the short-time discrete frequency (STFD) do-
main.

An important problem in this context is the adaptive detection
of the number of active speakers. Detection can be done using
Akaike’s Information Criterion (AIC), Rissanen’s Minimum De-
scription Length (MDL), or the Bayesian Information Criterion
(BIC) (see, e.g, [3] and references therein). But the formulation of
these criteria is difficult for the broadband case, especially where
disjoint sources like speech are concerned. Moreover, the detection
problem is coupled with the localization, requiring a multidimen-
sional non-linear maximum likelihood optimization, which adds to
the complexity. Furthermore, speech signals in a natural scenario
are dynamic: a speaker may start, be active for a while, fall silent,
and then start again. Even within active speaker segments, we have
speech pauses. For these reasons, most applications either assume
the number of concurrently active speakers to be known or implicitly
assume a single dominant speaker.

The imperative questions handled in this contribution are:

• deciding when and where (in an appropriately defined refer-
ence system) a speaker was active,

• determination of the number of active sources in any time
frame,

• deciding when a new source has become active (‘birth’ of a
source), and

• deciding when a source has fallen silent (‘death’ of a source).

Note that we shall impose neither the constraint of constant multi-
speaker activity (competing situation) nor that of single source dom-
inance.

The document is ordered as follows: in the next section, the
signal model and the assumptions the approach is based on are de-
scribed. The proposed approach is then detailed. Finally, the ef-
fectiveness of the proposed approach is illustrated on single- and
multiple- speaker recordings made in a reverberant and noisy room.

2. SIGNAL AND LOCALIZATION MODEL

We consider the case of an M sensor array, with the localization
being done along the azimuth: θ ∈ [0, 180◦], where θ is measured
with respect to the array axis. The signals input to the array are
segmented, windowed and transformed into the discrete frequency
domain using the discrete Fourier transform (DFT). Next, for each
transformed frame b, we select the subset {k : klow < k ≤ K/2} of
K′ bins from the K bins available to us, where K is the length of the
DFT. The upper bound is due to the symmetric nature of the DFT,
which makes the upper half of the spectrum (k > K/2) redundant
and the lower bound is because very low frequencies do not yield
good directional estimates.



Next, for each selected discrete frequency bin k of each frame
b, we compute the SRP functional JSRP(θ, k, b) [4, 1] over a pre-
selected grid of search locations. From this, we may compute an
estimate of the source azimuth as:

bθ(k, b) = argmax
θ

JSRP(θ, k, b). (1)

Under the assumption of speech disjointness and given the sparsity
of speech, each time-frequency point (k, b) can be attributed to a
single dominant speaker. Thus, the bθ(k, b) indicate the dominant
source location at that bin and frame1. Consequently, over multiple
bins of a single frame, we should have enough data to approximate
the speaker locations. This is done by clustering the bθ(k, b) esti-
mates obtained for each frame b.

3. MOG MODELLING

For the clustering, we model the vector sequence

bθ (b) =
“

bθ(1, b), . . . , bθ(K′, b)
”T

(2)

as a set of K′ realizations of a MoG process and estimate the param-
eters of this process using the Expectation Maximization (EM) [7]
approach. As this estimation is done on a per-frame basis, we shall
subsequently drop the frame index for convenience and reintroduce
it when necessary. Further, as the number of sources is not known
a priori, we start with a predefined model order I, where I is se-
lected to be an over-estimation. The EM clustering on the K′ values
bθ yields
the means : θ = (θ1, . . . , θI)T ,
the variances: Ξ =

`
σ2

1 , . . . , σ2
I

´T
, and

the weights/probabilities: P = (P1, . . . , PI)T

of the I components.
These initial values may overdetermine the underlying process.

Thus, we shall ‘shrink’ our model if necessary. To this end we define
a shrink threshold Υ and :

if ∃i, i′, such that |θi − θi′ | ≤ Υ

θi ←
Piθi + Pi′θi′

Pi + Pi′

σ2
i ←

Piσ
2
i + Pi′σ

2
i′

Pi + Pi′

Pi ← Pi + Pi′

I ← I − 1

(3)

The rationale behind the selected shrinkage operation is to re-
move the θi that are very close together (in practical situations, we
do not have point sources and thus, the sources always have a mini-
mum separation, which is indicated by Υ). Following the sequence
of steps in (3), the I−1 parameters are re-estimated using the newly
averaged values as initial seeding for the EM:

θinit = (θ1, . . . , θi, . . . , θi′−1, θi′+1, . . . , θI)T

Ξinit =
`
σ2

1 , . . . , σ2
i , σ2

i′−1, σ2
i′+1, . . . , σ2

I

´T

Pinit = (P1, . . . , Pi, Pi′−1, Pi′+1, . . . , PI)T

(4)

1In [5, 6], clustering is performed on the TDOA estimates τmm′ over all
microphone pairs (m, m

′) of the array, and for each bin and each frame. This
leads to a vector clustering model in contrast to the simpler scalar clustering
in the SRP case. However, our approach is applicable in both models.

This process is repeated until all cluster centroids have a minimum
separation of Υ. The number of clusters so obtained indicate the
number of sources in that frame, with their respective probability
of activity and their variance. Note that further shrinkage can be
obtained by setting thresholds on the weights Pi or the variances
σ2

i . This would better help eliminate transient sources. However,
MoG components with low weights could also indicate the onset of
a source. Therefore, in our implementation, we shall not impose
such thresholds, and rely instead on the tracking algorithm for the
purpose of discarding transient sources.
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Fig. 1. Note that the histogram clearly indicates contributions from
two major azimuths. The frequency averaged SRP cost function is
not as clear.

As a further point of interest, note that simply averaging the SRP
functional over the frequencies and extracting their maxima to find
the source location and number is not necessarily a viable alternative
to the clustering of the individual azimuth values. This is illustrated
in Fig. 1.
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Fig. 2. MoG decomposition of the histogram from Fig. 1 using I =
5 components. The two sources are clearly visible as the largest
components, ‘floor’ is the noise floor component, and ‘sum’ is the
net MoG model of the histogram from Fig. 1.

3.1. Modelling the noise floor

In bins where no source is active, the estimated bθ is randomly dis-
tributed over the azimuth space. This noise floor is modelled in
the MoG as a ‘hidden’ component (I + 1), with constant mean
(θ(I+1) = 90◦) and a large standard deviation σ(I+1) > Υv . For



this hidden component, only the weight and variance are adapted in
the EM step, with the standard deviation constrained to be above Υv .
This noise floor component is not assigned the status of a source.

3.2. Why re-estimate?

To justify the necessity of the re-estimation step after updating the
parameters as in (3), consider Fig. 3. This presents the histograms
and the estimated MoG fit (the penultimate curve) for the three cases:
(a) initial estimation (overdetermined), (b) shrunk model (from (3))
and (c) re-estimated, more compact model (I − 1 elements) with
initial seeding from (4). The noise floor is indicated by the compo-
nent before the estimated MoG fit and the histogram obtained from
the SRP functional is the last component. We see that the MoG fit
to the histogram improves after re-estimation, as compared to sim-
ply shrinking. This is clearly visible and is also indicated by the
corresponding, lower, Kullback-Leibler distance (KLD).
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(a) Overdetermined model (I = 5), KLD = 0.3803.
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(b) Shrunk model (I = 4), KLD = 0.4966.
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(c) Shrunk and re-estimated model (I = 4), KLD = 0.4510.

Fig. 3. MoG fit illustrating the effect of shrinkage. (a) indicates the
initial (overdetermined) estimate; (b), the estimate after shrinkage
according to (3); and (c), the model obtained after shrinkage and re-
estimation with initial seeding as in (4). The axis labelling is the
same as in Fig. 2. One source was active.

4. SOURCE TRACKING

In general, the number of sources changes from frame to frame. This
time variance of I is due to the following reasons:

• some means might be spurious (errors in the cost function, es-
pecially at lower frequencies and frequencies with low SNR),

• some means might indicate the onset of a new source,

• additionally, it could also happen that a source detected in the
previous frame(s) is not present in the current frame (within
the threshold window [−Υ, Υ]) – indicating a speech pause
for that source or the sign that it is dying out.

Note that only a constantly active source would contribute to a MoG
component (θi) that does not change significantly from frame to
frame. The MoG model of Section 3 cannot account for this time
variant nature of I and cannot distinguish between transient and ac-
tive sources. Therefore, we shall extend our localization framework
to include source tracking in order to preserve sources of interest and
discard transient sources.

For this, we maintain a frame-independent record of averaged
means, variances and probabilities, denoted as:

θ =
`
θ1 , . . . , θIT

´T

Ξ =
“
σ2

1 , . . . , σ2
IT

”T

P =
`
P1 , . . . , PIT

´T

(5)

where IT indicates the number of elements currently present in the
averaged mixture. Further, borrowing an idea from packet-switched
networks, we associate with each source i in the averaged set a ‘time
to live’, TTL

i
. Now consider the I (b) elements of the current frame

b, obtained as detailed in the previous section.

If ∃i (b) , i, such that |θi(b) − θ
i
| ≤ Υ

θ
i
←

θ
i
P

i
+ θi(b)Pi(b)

P
i

+ Pi(b)

σ2
i
←

σ2
i
P

i
+ σ2

i(b)Pi(b)

P
i

+ Pi(b)

P
i
← P

i
+ Pi(b)

TTL
i
← min

`
TTLmax, TTL

i
+1

´

(6a)

and, for each i (b) such that ∄ i, with |θi(b) − θ
i
| ≤ Υ,

θ ← θ ∪ θi(b)

Ξ ← Ξ ∪ σ2
i(b)

P ← P ∪ Pi(b)

IT ← IT + 1

TTLIT
← TTLmin

(6b)

and, for each i such that ∄ i (b) , with |θi(b) − θ
i
| ≤ Υ,

TTL
i
← TTL

i
−1 (6c)

Following this, P is renormalized to guarantee
P

i
P

i
= 1. Equa-

tion (6a) indicates the update for a source that was already present
in previous frames. Equation (6b) handles the situation where a pos-
sible new source has entered the system and (6c) indicates the case
where an existing source was absent in the current frame. Within
this framework, sources with a TTL ≤ 0 are considered to have
‘died’ and are removed from the averaged set. Note that the limita-
tion TTLmax is required in order to limit the source lifetime, giving
us a reasonable period of ‘aging’ and ‘death’ for a source that is not
active anymore.



4.1. Source Number Estimation

After the updates in (6), the number of active speakers in each frame
is determined, based on the parameters of the respective MoG com-
ponents. Note that the MoG model provides us with a rich set of
parameters to base our decision upon. For our implementation, we
choose to denote a source as active if the standard deviation of the
corresponding component is below Υ. This choice is based on the
observation that MoG components that model active sources demon-
strate a peaky distribution, with a low variance. The locations of the
active speakers are then given by the means of the selected MoG
components.

5. EXPERIMENTAL EVALUATIONS

We shall illustrate the performance of the proposed approach on
recordings made in a reverberant room (T60 = 0.5 s, critical dis-
tance ≈ 0.8 m), using a 5 element linear microphone array, with
the elements placed at distances of 3, 8, 15, and 25 cm, respec-
tively, from the first element. The sources were positioned at a
distance of around 1.0 m from the array center, and were sampled
at a rate of fs = 8 kHz. White noise at 5dB SNR was added to
the recorded signals for the experiments. The DFT analysis was
based on a K = 512 point DFT, with a 50% overlap and a von
Hann window. The shrink threshold was set to Υ = 10◦ and
the noise floor threshold was set to Υv = 20◦. For each frame,
the MoG model was initialized with a fixed number of elements
I = 5, and the parameters estimated (with shrinkage if necessary).
Due to space constraints, the evaluation here does not cover all
aspects of the proposed algorithm. Further results may be found at
http://www.rub.de/ika/ika/forschung/gruppe martin/
hum mach interf/hum mach eng.htm.

Fig. 4 indicates the performance of the proposed approach on a
single source around broadside. Note that the performance is not de-
graded significantly when the azimuth resolution of the SRP search
grid is decreased from 1◦ to 7◦. The size of the marker is propor-
tional to the TTL of the source. This allows us to see the birth-death
process of the sources more clearly.
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Fig. 4. Localization results using the proposed model on SRP func-
tionals with varying search grid resolutions. Signals were from one
speaker, close to broadside (θ ≈ 85◦) with a background SNR of
5dB.

Fig. 5 indicates the performance of the system for two simulta-
neously active speakers (approx±30◦) away from broadside. Again,
we see that the system is able to track both speakers with low false
positives, even when the resolution of the SRP search grid is low-
ered. This speaks both for the capability of the proposed approach
and the parameter choice for source number detection.
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Fig. 5. Localization results for two competing speakers, approxi-
mately ±30◦ around the broadside. The background SNR was 5dB.

6. CONCLUSIONS

We have proposed a simple and elegant framework for the simulta-
neous localization of mutliple speakers, exploiting the sparsity and
disjointness of speech for the purpose. We have further shown that
our framework has the additional benefit of providing the same lo-
calization accuracy even when the SRP functional is computed over
a coarser search grid. This reduces the computational load without
compromising accuracy. This is particulary beneficial for arrays with
a large number of sensors as in [2]. Additionally, we have presented
a simple framework for tracking the sources. In order to more ac-
curately model moving sources, the framework may be enhanced by
suitable state-of-the-art algorithms (e.g., [8]). This is a subject for
future research.
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