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ABSTRACT
This article details a simple method developed to detect sensor
degradation in microphone arrays and to equalize the microphone
gains. The described method is online in nature and based upon the
long-term power spectra of the microphone signals of each array.
For a multi-array system, the calculations are done separately for
each array, the close proximity of the microphones in an array being
necessary for the application of the detection and calibration meth-
ods. The approach is tested on three sample degradation scenarios:
complete sensor failure, non-linearity in the input, and parasitic
harmonic injection. The results indicate that the developed approach
is capable of detecting such failures. The calibration factors com-
puted using the proposed approach are similar to that obtained by
established methods.

Index Terms— Microphone arrays, self-calibration, gain cor-
rection

1. INTRODUCTION

When using arrays for the localization and enhancement of acous-
tic sources, the proper functioning of each channel of the array is
implicitly assumed. However, in applications where the arrays are
deployed in adverse environments, and for long periods of time,
this assumption needs to be verified periodically. Furthermore, the
underlying matched-microphone characteristics assumption of most
multi-channel signal processing algorithms is not guaranteed due to
the manufacturing tolerances of the microphones, and that of the as-
sociated amplifier and sampling components. Such mismatches lead
to a degradation in algorithm performance.

The problem of calibration has been well studied in literature.
One approach is to calibrate the microphone arrays using known
calibration sources, either in anechoic environments or in situ [1].
The calibration filters are then held constant during the operational
phase. Periodic recalibration may be done to correct degradations
due to changes in environment or age related changes. If done prop-
erly, such approaches are able to correct both gain and phase mis-
matches and considerably improve the performance of the localiza-
tion/enhancement algorithms.

Alternatively, in [2], the calibration filters are computed online
in a generalized sidelobe canceller (GSC) structure, using the en-
hanced signal after the fixed beamformer stage for better SNR con-
ditions. The direction of the desired signal is assumed known and
the calibration is done in the presence of the target signal. Similar
structures are proposed in [3]. These approaches are better suited to
dynamic environments – where a periodic recalibration using known
signals is impractical

In [4] it is argued that the problem arising from mismatch is
more due to the gain imbalance. Thus, to improve performance, it is
sufficient to compute only a scalar, the gain correction factor, instead
of a filter. This is also the focus of [5]. The difference between the
two approaches lies mainly in the adaptation of the gain correction
factor. Whereas [4] adapts the gain factors in the presence of a single
dominant source with a strong direct path, [5] models the gains over
a long-term average of the signal powers with the assumption that,
over a long observation period, the average power received by all the
microphones must be the same in the absence of mismatch.

The approaches summarized above, however, assume that all mi-
crophone channels are functional. While detection of sensor failure
can be done by manually disassembling and re-calibrating the arrays,
this procedure is not only time-consuming, but also impractical. On-
line algorithms for sensor degradation detection are thus necessary,
and such an algorithm is the focus of this contribution.

The rest of the article is organized as follows. First, for clarity,
we shall introduce the notations we adopt throughout the text. Next,
we describe the system model and enumerate our key assumptions
and simplifications. Based upon this model, Section 4 presents a
detailed discussion of the proposed online approach: the spectral
correlation (SCORE) approach.

2. NOTATIONS

The discrete-time domain signal at any sensor m is denoted as
xm(n), where n denotes the discrete-time index. The corresponding
K-point discrete Fourier transform1of this signal segment is denoted
as:

DFT {xm(n)} = Xm (k) k = {0, . . . , K} . (1)

Further, stacking the time domain signals of all the channels at time
n as:

x(n) = (x1(n) , x2(n) , . . . , xM (n))T , (2)

we obtain an M -dimensional vector for that time instant. We can
write a similar expression for each frequency bin as:

X (k) = (X1 (k) , X2 (k) , . . . , XM (k))T , (3)

where Xm (k) is the DFT coefficient for channel m and bin k.

1In practice, we perform frame-wise operations upon the input signals.
Therefore, a more accurate expression would be:

DFT {xm(bO + n)} = Xm(k, b) ,

where O ∈ N indicates the frame shift (in samples) between the frames and
b, the frame index. The frame index shall be dropped for convenience and
re-introduced where required.



3. SYSTEM MODEL

We consider the general case of an array of M channels and Q
sources distributed in the environment of the array. Q is any un-
known number, inessential to the approach. The general signal
model we shall assume subsequently is:

X (k) = A⊙

 
QX

q=1

Sq (k)

!
+ V (k) , (4)

where⊙ represents the element-wise (Hadamard) product, Sq (k) =

(Sq1 (k) , Sq2 (k) , . . . , SqM (k))T ∈ C
M×1 represents the part

of the input that is dependent upon the signals in the environment,
and received at all the channels (the propagation effects are implic-
itly included in the definition); V (k) = (V1 (k) , . . . , VM (k))T

represents the part of the input that contains self-induced noise and
A = (A1, . . . , AM )T indicates the calibration factor where, fol-
lowing [4], they are assumed to be purely real and independent of
frequency. The microphone signals are assumed to be zero-mean
and the Q sources statistically independent of one another and of the
self-induced noise.

Our approach is based on assumptions similar to that in [5]: we
principally assume that each microphone receives the same power on
an average. This is a justifiable assumption when the microphones
of an array are placed close together. Therefore, for microphones
that are properly calibrated, the values for the Am would be around
1, whereas, when sensor degradations occur, the values diverge.

As a note, under some acoustic conditions, e.g., when the array
is in a standing wave field, the assumption of equal average power
may be grossly violated, leading to strong power variations across
the microphones of the array. These variations do not reflect the
mismatch being modelled. Consequently, adapting the gain func-
tions and/or detecting degradation etc. leads to biased results in such
conditions. These fields are usually generated by strongly directive
sources, and in such cases it might be advisable to allow the algo-
rithm to be active only during periods where these sources are ab-
sent. The detection of such directive sources may be accomplished,
for example, as in [6, 7, 8].

4. THE SCORE APPROACH

For a healthy array, a sufficient condition for equal average power at
each sensor is that the average spectral power of each sensor should
be similar. For a microphone m, the power spectrum is computed by
an averaging of the instantaneous power, Em(k, b) = |Xm(k, b) |2,
of the DFT coefficients over multiple frames B (temporal averag-
ing). We define this value as:

Em (k) =
1

B

X

b

Em(k, b) (5)

To detect sensor degradations, we treat the power spectrum of
each channel as a realization of a random process and compute the
correlations between the spectral powers of the channels. Thus, for
each channel pair (m, m′), we obtain the corresponding correlation
coefficient [9] Γmm′ as follows:

bµm =
1

K

KX

k=1

Em (k) , (6)

Γmm′ =

P
k

“
Em (k)− bµm

”“
Em′ (k)− bµm′

”

r
P

k

“
Em (k)− bµm

”2P
k

“
Em′ (k)− bµm′

”2
, (7)

where K is the length of the (discrete) Fourier transform. Stacking
the Γmm′ according to the indices, we obtain the corresponding cor-
relation matrix Γ for the array under consideration. Fig. 1 shows this
correlation matrix Γ for a sample 8 channel array.
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Fig. 1. Power spectrum correlation for a healthy array. Note the high
values of the correlation coefficients.

The advantage of using the correlation coefficients as defined
in (7) becomes evident when we consider a noise floor that is spec-
trally flat (which is a realistic assumption for the sensor noise).
For this case, taking the statistical expectation of the instantaneous
power, we obtain from (4) and the definition of Em(k, b):

E {Em(k, b)} = E
˘
|Xm(k, b) |2

¯

= |Am|
2

QX

q=1

ΨSqmSqm(k) + ΨVmVm(k)

= |Am|
2ΨSS (k) + ΨVmVm ,

(8)

where ΨSS (k) =
PQ

q=1
ΨSqmSqm(k) and ΨSqmSqm (k) is the

power spectral density of the qth source at sensor m, for bin k. Note
that the equal average power assumption at each channel implies that
ΨSS (k) is the same for all the channels – indicated by dropping the
channel index m in (8). Note, also, that the frequency index has been
dropped for the noise because it is assumed to have a flat spectrum.
Consequently,

µm =
1

K

KX

k=1

E {Em (k)}

= |Am|
2 1

K

KX

k=1

ΨSS (k) + ΨVmVm .

(9)

We now see that computing the correlation as in (7) yields a value
that is not sensitive to white noise and dependent upon the incident
signals only, thus avoiding any bias in the correlation function.

4.1. Determining the corrupted channels from Γ

As shown in Fig. 1, the correlation between the power spectra is
high when the channels function properly – illustrated below for an



M = 8 sensor array:

Γ =

0

B

B

B

B

B

B

B

B

@

1.000 0.970 0.963 0.964 0.964 0.962 0.953 0.943
0.970 1.000 0.992 0.986 0.982 0.969 0.942 0.914
0.963 0.992 1.000 0.997 0.994 0.983 0.960 0.929
0.964 0.986 0.997 1.000 0.999 0.992 0.972 0.943
0.964 0.982 0.994 0.999 1.000 0.996 0.979 0.950
0.962 0.969 0.983 0.992 0.996 1.000 0.989 0.964
0.953 0.942 0.960 0.972 0.979 0.989 1.000 0.983
0.943 0.914 0.929 0.943 0.950 0.964 0.983 1.000

1

C

C

C

C

C

C

C

C

A

Summing the Γmm′ values along the columns then yields values
close to M :

8X

m′=1

Γmm′ =
`
7.722, 7.758, 7.820, 7.8556, 7.865,

7.858, 7.782, 7.628
´T

.

However, when one or more channels are degraded, this correlation
goes down, as illustrated below for the case where sensor 1 is de-
graded.

|Γ| =

0
BBBBB@

1.000 0.026 0.029 0.033 0.032 0.033 0.026 0.012
0.026 1.000 0.992 0.984 0.981 0.975 0.962 0.946
0.029 0.992 1.000 0.997 0.995 0.988 0.973 0.957
0.033 0.984 0.997 1.000 0.999 0.994 0.981 0.963
0.032 0.981 0.995 0.999 1.000 0.997 0.985 0.966
0.033 0.975 0.988 0.994 0.997 1.000 0.992 0.972
0.026 0.962 0.973 0.981 0.985 0.992 1.000 0.983
0.012 0.946 0.957 0.963 0.966 0.972 0.983 1.000

1
CCCCCA

.

The column sum yields, in this case,

8X

m′=1

Γmm′ =
`
0.805, 6.817, 6.873, 6.886, 6.893,

6.888, 6.852, 6.777
´T

;

i.e, values significantly lower than M , with the first element having
the lowest score. Using this observation, we arrive at our procedure,
described in Fig. 2. Note that the approach is iterative: we discard
the defective sensors in the descending order of their magnitude of
degradation. This is necessary because it allows for the setting of
a uniform degradation threshold. It is not possible to obtain such a
uniform threshold value if we decide to pick the degraded sensors in
one step, on the basis of the column sum.

Further, the limitiation of M ≥ 3 in step 7 is required in order
to have a majority vote. Obviously, given only two sensors with low
correlation it is difficult to decide which sensor is defective.

4.2. Determining the calibration factors

Once the degraded channels have been weeded out, the gain calibra-
tion can be done for the remaining elements of the array. For this,
we first compute the average power at each sensor by summing the
power spectrum:

Em,m* DegradedChannels =

KX

k=1

Em (k) (10)

Next, the sensor with the maximum power is taken as the reference:

Eref = max Em,m* DegradedChannels (11)

and the calibration factors may be computed for the remaining chan-
nels, with respect to this sensor, as:

gm,m* DegradedChannels =
Eref

Em

. (12)

In order to prevent any particular block/time interval from influenc-
ing the gain factors, we should use iterative updates for the gains as
proposed in [4].

1. DegradedChannels = {}

2. ∀ channels m of M, do:

Calculate the Em (k) (using (5)).
End

3. Calculate Γ as in (6) & (7).

4. Let ̺0 := allowed degradation in the channels.

5. Calculate the column sum: γ =
P

M

m′=1
Γmm′.

6. ∀ elements γm of γ, do:

̺m =
γm

M

End

7. If (∃ ̺m < ̺0) & (M ≥ 3), do:
Find mbad = argmin

m

̺m

DegradedChannels = DegradedChannels ∪ mbad

Remove the row and column for channel mbad from Γ

M ←M − 1
Go to Step 5.

End

Fig. 2. Algorithm to determine degraded channels using the SCORE
approach.

4.3. Additional considerations for the SCORE approach

The above discussion has assumed a stationary power floor so far.
However, in practical situations, we need to consider the eventuality
that the average signal power could change with time, necessitating
some kind of moving average operator similar to (5). There may also
be signal segments which cannot be used (as discussed previously).
This would lead to breaks in the averaging periods. Consequently,
we split the averaging of (5) into two parts: first, for each block o of
length T ms that contains mainly diffuse signal components (corre-
sponds to B ≈ (Tfs−K)/O +1 frames2), the short-term temporal
average is computed:

Em
o (k) =

1

B

X

b

Em(k, b) . (13)

Next, the long term average is computed on the selected blocks in a
recursive manner – in order to conserve memory – as:

Em (k)← η Em
o (k) + (1− η )Em (k) , (14)

where η is the smoothing factor for the update. Equation (13)
provides a robust estimate of the signal power within the block o,
whereas the second part (equation (14)) adapts the power spectrum
to changes in the average signal power with time. As the detection of
the anomalous sensors is based on long term averages, it suffices to
compute the necessary parameters – the gm and Γ – once every few
seconds, reducing the computational load on the processing engine.

5. EVALUATION

The proposed approach was tested on a system designed for the au-
tomotive industry, where the focus was on the localization of har-
monics. Due to space constraints, only the following results are pre-
sented:

a. Complete failure of multiple sensors (such sensors record
only noise)

2with a frame shift of O samples, sampling rate fs, and K-point DFT



b. One (or more) microphones are nonlinearly corrupted (clip-
ping/rectification)

c. Multiple microphones pick up parasitic sinusoids (corre-
sponding, e.g., to cross-talk with power supplies).

The system parameters used in the experiments were: K = 1024,
O = 256, fs = 32 kHz, T = 200 ms, and ̺0 = 0.7. The signal
segment considered was 5 s long.

5.1. Complete sensor failure

In this evaluation, a degraded channel is represented by replacing
the time domain signal by random, uncorrelated, white noise of unit
variance. This would correspond to the case where a sensor is defec-
tive to the point where it does not respond to acoustic input. For the
correlation matrix we have:

|Γ| =

0

B

B

B

B

B

B

B

B

@

1.000 0.094 0.030 0.036 0.016 0.042 0.050 0.034
0.094 1.000 0.030 0.034 0.043 0.041 0.042 0.022
0.030 0.030 1.000 0.996 0.098 0.987 0.970 0.947
0.036 0.034 0.996 1.000 0.090 0.994 0.976 0.948
0.016 0.043 0.098 0.090 1.000 0.090 0.096 0.080
0.042 0.041 0.987 0.994 0.090 1.000 0.990 0.957
0.050 0.042 0.970 0.976 0.096 0.990 1.000 0.970
0.034 0.022 0.947 0.948 0.080 0.957 0.970 1.000
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C

C

C

C

C

C

C

C

A

.

Note, the low correlation values for channels 1,2 and 5, clearly de-
lineating them as corrupted channels. Also, computing the average
power we obtain:

Em =
`
193.8× 103, 194.6× 103, 1.269, 1.359,

197× 103, 1.321, 1.181, 1.161
´
,

where we see abnormal power levels for channels 1,2 and 5, al-
though, this alone is not always indicative of the improper sensor
functioning.

5.2. Non-linear degradation

The non-linearity considered here is full wave rectification: x̃m(n) =
|xm(n) |, i.e., the absolute value of the input signal is taken. For this
case, again channels 1,2 and 5 were considered to be degraded. The
correlation matrix obtained is:

Γ =

0

B

B

B

B

B

B

B

B

@

1.000 0.885 0.376 0.384 0.902 0.401 0.443 0.499
0.885 1.000 0.361 0.363 0.948 0.384 0.428 0.498
0.376 0.361 1.000 0.997 0.371 0.993 0.979 0.895
0.384 0.363 0.997 1.000 0.376 0.996 0.981 0.895
0.902 0.948 0.371 0.376 1.000 0.397 0.438 0.513
0.401 0.384 0.993 0.996 0.397 1.000 0.991 0.910
0.443 0.428 0.979 0.981 0.438 0.991 1.000 0.941
0.499 0.498 0.895 0.895 0.513 0.910 0.941 1.000

1

C

C

C

C

C

C

C

C

A

,

In this case, too, we see that the power spectra of degraded channels
show a lower correlation with the power spectra of healthy channels,
and the iterative procedure described in Fig. 2 is able to correctly
pick out the degraded microphones. The high correlations between
pairs (1,2), (1,5) and (2,5) are to be expected, as they suffer from the
same degradation.

5.3. Random parasitic sinusoids

For this purpose, a sinusoid of 100 Hz was added to the signals of
microphone 1,2 and 5, at 0 dB SNR. We present, here, only the case
of a single harmonic as it is more difficult to detect than the case of
multiple harmonics. The parasitic sinusoid at each microphone has
a random phase offset. The correlation matrix for this case is:

Γ =

0

B

B

B

B

B

B

B

B

@

1.000 0.999 0.096 0.102 0.999 0.097 0.106 0.101
0.999 1.000 0.085 0.091 0.999 0.083 0.091 0.086
0.096 0.085 1.000 0.996 0.080 0.987 0.970 0.947
0.102 0.091 0.996 1.000 0.086 0.994 0.976 0.948
0.999 0.999 0.080 0.086 1.000 0.080 0.087 0.081
0.097 0.083 0.987 0.994 0.080 1.000 0.990 0.957
0.106 0.091 0.970 0.976 0.087 0.990 1.000 0.970
0.101 0.086 0.947 0.948 0.081 0.957 0.970 1.000
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C

C

C

C

A

Note that the correlations between channel-pairs (1,2), (1,5), and
(2,5) are high – which is not surprising since they suffer the same
kind of degradation. However, their respective correlation with the
other channels is low.

6. CONCLUSIONS

Current algorithms for online self-calibration of microphone arrays
do not consider the eventuality of sensor degradation. Accordingly,
in this contribution, we have introduced a simple, online approach
– SCORE – for the in situ detection of corrupt sensors. The merits
of the approach were tested under three possible sensor degradation
scenarios: complete sensor failure (only noise at the degraded sen-
sor); non-linear distortion of the sensor signals; and parasitic har-
monics in the channels. The approach performs well for all these
cases of sensor degradation. The proposed method is computation-
ally inexpensive – the averages computed are evaluated only once
every few seconds.

In addition, Section 4.2 indicates how the method can also be
used for the gain calibration of the ‘healthy’ microphones of an ar-
ray. Our approach yields gain compensation factors similar to that
of [5] while, at the same time, providing an indication regarding the
state of the sensor. In contrast to other state-of-the-art calibration
algorithms [2, 3], this algorithm does not need phase equalization or
time-delay compensation prior to calibration.
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