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ABSTRACT

This paper presents a meeting diarization system that estimates who
spoke when in a meeting, especially if there is a speaker position
change. Our previous system utilized solely the direction of arrival
(DOA) information for meeting diarization. Therefore, when some-
one moves from one place to another, our previous system mistakes
the utterances from second place for another person’s utterances. In
order to handle such a speaker position change in a meeting, this pa-
per tries to combine DOA information and Gaussian mixture model
(GMM)-based speaker identification (SI). First, relying on the DOA
information, we cluster the recorded meeting into segments. Sev-
eral segments coming from the same DOA are utilized to construct
GMMs for the Mel frequency cepstral coefficients (MFCC) for each
speaker. The diarization result is obtained by evaluating every seg-
ment clustered by DOA against all speaker models. We obtained
encouraging results for simulated meetings with a measured room
impulse response and a recorded meeting, where the reverberation
time of the room was about 350 ms.

Index Terms— meeting diarization, speaker identification,
voice activity detector, direction of arrival

1. INTRODUCTION

In recent years audio diarization has become an important topic
and was studied extensively [1]. There are several applications
like speaker diarization, also called ”who spoke when” estimation,
which can be split up into three categories: broadcast news diariza-
tion, telephone conversation and meeting diarization. Our paper
concentrates on the last one.

In particular, this paper handles the problem of a speaker posi-
tion change in meeting scenarios. This position change could occur
often in real meetings, for example if the presenter is changing or a
whiteboard is shared by speakers.

One of the most important technique for meeting diarization is
speaker clustering. By speaker clustering, certain sound objects in-
cluded in the recorded signals are separated into several clusters,
each of which is assumed to correspond to one speaker in the meet-
ing. Our previous system was build up solely on clustering DOA
information. The effectiveness of this approach has been well con-
firmed by our experiments [2, 3]. However, only with DOA infor-
mation, if a speaker changes his position, he was either recognized
as another speaker or as a completely new speaker. To cope with
such an issue we propose to combine DOA clustering and SI. In this
paper, we assume that the speakers could change their seats, and that
there is just one speaker at each direction at the same time.
�
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Our proposed method in this paper is as follows: First, using
the DOA information, we cluster the speech segments. We adopt a
DOA estimation technique that can detect more than one source at
the same time for this purpose [3]. Then, each speech segment is
enhanced based on a microphone array speech enhancement tech-
nique, referred to as a maximum signal-to-noise ratio (MaxSNR)
beamformer [11]. Finally the speech segments are clustered into in-
dividual speaker clusters by using SI techniques. Here, for the sake
of simplicity, we assume all speakers stay and give a few utterances
at their initial positions during first several seconds of the meeting.
Based on this assumption, speaker segments over a specific period in
the beginning are utilized to train the speaker models for each per-
son. Then, each segment following the training period is assigned
to one trained speaker by determining the GMM with the highest
likelihood for its feature vector sequence [4].

Previously, the authors of [5] have proposed to combine DOA
and speaker spectral features for meeting diarization. The paper just
combines these features to cluster the speakers for a Bayesian infor-
mation criterion (BIC) calculation, which has been widely employed
in the meeting diarization area [1]. In [5], they extracted DOAs as
time differences that give the cross correlation peaks between micro-
phones. However, this is not a robust DOA feature in a real meet-
ing situation. In addition, this feature does not allow us to handle
time segments, in which more than one speaker talk at the same
time. In contrast, our method can handle speaker overlaps by using
time-frequency domain DOA and speech enhancement techniques.
Because the performance with solely the DOA clustering has been
confirmed [2, 3], it is possible to focus on the SI of each segment
decided by the DOA clustering. The main contribution of this paper
is to propose a new way for combining DOA and speaker spectral
information, and to confirm whether a SI technique achieves better
meeting diarization performance or not. The experimental results
with a measured room impulse response and a recorded meeting,
where the room reverberation time was about 350 ms, show that our
new method can handle the speaker position change in a meeting.

2. PROPOSED SYSTEM

Let us denote the recorded data �������
	 , with the microphone index�
ranging from one to three in our case. In the following we uti-

lize the time-frequency representation � � ����
��	 of our observations
��������	 , which can be obtained by the short-time Fourier transform
(STFT). Here  is a frequency and � is a frame index. The overall
system flow is visualized by Fig. 1 and works in the following way:

First we apply a voice activity detector (VAD) on the recorded
data, to detect whether a speaker is present or not. The next step
contains the estimation of the DOA for every frame with the general-
ized cross correlation method with a phase transform (GCC-PHAT),



Fig. 1. Block diagram of overall system flow.

to determine the direction of the speakers. Based on the framewise
DOA information we perform segmentation of recorded data with an
online clustering [6] and use the cluster centroids ���� as the directions
from where speaker � is speaking.

We additionally extract time-frequency direction of arrival (TF-
DOA) information [3], which provides the DOA for every frame and
every frequency bin separately. This result will be used later to im-
prove the segmentation result as well as the detection of overlapping
speaker segments.

To cope with the problem of clusters containing just a few
frames as well as noisy results we apply a smoothing operation.
Executing this operation results in smoother segments by closing
small gaps and the elimination of isolated frames caused by noise.
Using the results of the DOA clustering and the VAD, we obtain
MaxSNR beamformer coefficients which are applied to filter the
recorded meeting to suppress noise and other active speakers.

Based on our segmentation result the system extracts the fea-
ture vectors consisting of 12 MFCCs plus fundamental frequency
for training and identification segments (see Section 2.5 and 2.6).
The GMM model parameters are estimated then using the expecta-
tion maximization (EM) algorithm [7] on the obtained training fea-
ture sequences. For the GMM training, we assume that no speaker
change occurs up to a certain time point.

SI includes the likelihood calculation for each identfication seg-
ment against all speaker models. Finally we assign the speaker with
the highest likelihood to that interval. In the following sections each
part of the system is described in detail.

2.1. VAD

Aim of this step is to find the speech periods in the recording. Re-
gions of non-speech, which we have to differentiate can be man-

ifold, such as silence or background noise. In order to construct
such a VAD which is robust to various kinds of noise, it is based
on a two stream approach using speech and non speech discrimi-
nators. These are periodic to aperiodic component ratio-based de-
tection (PARADE) and a switching Kalman filter (SKF)-based ap-
proach [8].

In this paper the VAD results ��������	 are given by binary labeling
(1 for speech frame, 0 for non-speech frame). For our microphone
array VAD is done for every channel separatley first and joined af-
terwards by a single binary OR operation. The speech period is then
defined as �! #"%$&�('&�)�*�+-,�.0/1*��2,&/�,�34*5.76&8 .

2.2. DOA estimation

In this paper, we use VAD and DOA information for segmentation.
The latter we get by first estimating the time difference of arrival
(TDOA) 9;:�<�>= ����	 for all microphone pairs

�
and

� : using the GCC-
PHAT [9]. Using the TDOA and the given microphone coordinate
information we get the DOA estimates 95����	 [10]. Additionally we
estimate the TFDOA at each time-frequency slot with

9 :�<�>= ����
��	?" 6@;A  *�)&BDC � � ����
��	E�
��F= �������	<G (1)

which we will use later to refine our segmentation results obtained
by clustering the framewise DOA information 9H����	 . In our setup
we only make use of the azimuth

� ����	 for simplicity in both cases.
Further details of this method can be obtained in [3].

2.3. Segmentation and smoothing

Relying on DOA information, the speech period �  is then classi-
fied into each speaker period � � �I�J"K6��2L2L�LM�>NO.QP�,�*H�5,�)R.&	 , which
gives us the segmentation result. This is done by an online cluster-
ing (leader-follower clustering) [6] algorithm. The pseudocode of
this algorithm can be found in [2].

Depending on the threshold to add new clusters or assign the
point to an existing cluster, the final clustering result has clusters,
that do not represent a speaker in reality. Those clusters have a very
sparse frame density distributed over the time axis. A simple way
to eliminate those frames consists of using a smoothing filter. In our
case we apply a sliding window of odd length S and set the frame
belonging to the midpoint of that window to one if more than 45 %
of the frames of the total window size S are classified as speech. The
initial and final T U frames are set to zero, assuming nobody is talking
in the first and last VHW X seconds of the recording.

All clusters, that have frames left after smoothing are accepted as
real speaker segmentation information and the centroid �� � is used as
the recognized speaker direction. In a further step this segmentation
information is improved by the TFDOA data as explained in [3].

2.4. Maximum SNR beamformer

In a real meeting situation, like a discussion, speaker overlaps oc-
cur frequently. This overlaps would disturb the GMM training and
decrease the SI performance significantly. Another common prob-
lem can result from projectors or personal computers in a meeting
room causing directional noise, which can also be classified as an
additional speaker in the worst case.

To cope with these problems and to reduce the influence onto SI
we conduct a blind speech separation with a MaxSNR beamformer
[11].
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Fig. 2. Visualization of feature vector extraction for training and
testing data. Each bar represents a segment by DOA clustering.

By applying the beamformer coefficients YOZ to our recorded
signal we get the enhanced speech for the speaker at the � -th position

[ � ����
��	?"\Y(]� ���	E^_����
��	>W (2)

2.5. Feature extraction and GMM training

Then, using the enhanced signals with the MaxSNR beamformer,
we conduct the SI, which includes feature extraction, GMM training
and likelihood evaluation stages (see Fig. 1). The training data for
the estimation of our GMM parameters is defined by the first part
of the meeting. Here, the training period �`"a6��2L2L2Lb��c5d�e
f�gih is set
in advance. The enhanced signal [ � in the training period for each
direction �� � is utilized as the training data for each speaker GMM.

In the feature extraction stage, from the training data, we cal-
culate the feature vector j d�e
f�gkh� ����	 for each frame � belonging to
speaker � . We extract 12 MFCCs and the fundamental frequency for
every frame where speaker � is active before c d�e
f�gkh and construct
the 13-dimensional feature vector sequence by merging together all
feature vector sequences for each segment of speaker � . This proce-
dure is visualized in Fig. 2. The fundamental frequency is estimated
by a maximum search in the autocorrelation function [12].

Then, using these feature vectors, the GMM for each direction
�� � is trained. We train the GMM parameters using an iterative EM
algorithm [7]. The GMM parameters include the mean lnm� , diago-
nal covariance matrix o m � , and the weight p m � , where /q"r6R��LsL2Lt�s6�V
denotes the mixture component index.

2.6. Likelihood evaluation

Finally we identify the speaker for each segment after �u"vc�d1e�f2gih .
One segment consists of a consecutive sequence of frames stemming
from the same direction. For each segment + we take the extracted
feature vectors j d1wQxQdy ����	s��+K"z6R��L2LsLt�FND.&,2B�+-,&{��
.;	 (see Fig. 2) and
calculate the likelihood for all speaker models [4]. An identified
speaker for segment + is obtained through selection of the model
with the highest likelihood. This gives us the final diarization result.

3. EXPERIMENTAL RESULTS

3.1. Setup

We conducted experiments using simulated data with measured
impulse responses and also one measured meeting. The measured
meeting was performed in the room shown in Fig. 3 with a reverber-
ation time around 350 ms. In our scenario four speakers, two males
and two females were present. Additionally a personal computer has
been placed in the room which acted as a noise source. The distance
between speakers and microphone array was approximately one
meter. The exact arrangement can be seen in Fig. 3. The recording
time was set to five minutes.

Fig. 3. Room setup. Small circles illustrate initial speaker locations
each speaker moved to the presenter position (PP).

Simulations were build by convolving clean speech recordings
with measured room impulse responses recorded in the same room
as the measured meeting. We also recorded noise in this room in-
cluding the personal computer. The noise was added with 10 dB sig-
nal to noise ratio (SNR). The meeting length was set to 90 seconds.
We conducted four simulations: Simulations 1 and 2 had no over-
lapping segments and three speakers each. Simulation 3 contained
also no overlap, but four speakers. In simulation 4, speaker overlaps
(six seconds in total) occured and four speakers were present. We
evaluated 10 different speaker combinations for each simulation and
averaged over the results.

The sampling rate of our system was 16 kHz, STFT was done
with a 64 ms window and 32 ms frame shift. The feature extraction
stage, which operated on a 32 ms frame size and 8 ms frame shift,
provided 12 MFCCs, excluding the 0’th coefficient. The GMM was
build up with 10 mixture components. For the initialization we used
random values for the means lnm� , equal probabilities for the mix-
ture component weights p m � and estimates from the feature vector se-
quence for covariance matrices |}m� . The EM iteration was executed
10 times or stopped if the total likelihood increase for the training
data fell below a threshold. The smoothing filter length of S was set
to 51 samples.

3.2. Evaluation

The diarization performance of our system was measured with the
diarization error rate (DER),

~��q� " Wrongly estimated speech period length
Entire speech period length � 6�V�V5C ��GI�

established by NIST [13]. It includes missed speaker time (MST)
(no speaker in estimation, but reference), false alarm time (FAT)
(speaker in estimation, but not in reference) as well as the speaker
error time (SET) (wrong speaker in estimation), which could be used
to measure the speaker recognition performance.

If the number of detected speakers outnumbers the real number
of participants this time was marked as SET. Ground truth for the
measured meeting was generated by employing a hand-labeled tran-
scription, including temporal information about the speech onsets
and offsets of each speaker.

3.3. Results and discussion

In our measured meeting every speaker was introducing himself for
10 to 30 seconds. After this point each speaker changed his seat to



Table 1. Experimental results for measured meeting [%]
DOA with SI DOA without SI

Evaluation data ID DER MST FAT SET DER MST FAT SET
meeting 1 23.1 10.1 4.1 8.9 55.2 10.1 4.1 41.0

Fig. 4. Ground truth (a), diarization result of previous (b) and new
approach (c) for the measured meeting. Each color represents one
speaker.

the presenter position (marked with PP in Fig. 3) one after another
and spoke there for 30 to 40 seconds. Ground truth (a), diarization
result of our previous system (b), and diarization result of our new
approach (c) are visualized in Fig. 4. We set c d�e
f�gih to 120 seconds
and used the segmented data to build our speaker models.

An overview of the yielded diarization errors is depicted in Ta-
ble 1. We compared the performance with and without SI. With our
previous method, without SI and DOA only, we could not handle
a speaker position change which led to a big SET. Such a fault is
visualized in Fig. 4 (b). After 120 seconds each speaker spoke in
rotation (Fig. 4 (a)). However, with our previous method, all the
segments from a DOA of -160 � are classified as one person. On the
other hand our new method can identify each speaker from the same
position (DOA of -160 � , see Fig. 4 (c)) and outperforms the previous
approach shown in Table 1. Our system achieves a SET of 8.9%.

Table 2 summarizes the simulation results. In the beginning of
our simulations around 10 seconds of each speaker are used for the
speaker model parameter training. The following speaker segments
have a length of three to five seconds and are uttered from a differ-
ent position. Due to the big window for smoothing and continous
utterances over the whole interval MST and FAT were very low. We
verified the capability of the speaker identifier for this short train-
ing time, achieving a 85% identification rate for training segments
ten seconds and identification segments five seconds in length for 20

Table 2. Experimental results for simulated meetings [%]
DOA with SI DOA without SI

Evaluation data ID DER MST FAT SET DER MST FAT SET
simulation 1 8.7 2.1 0.1 6.4 34.8 2.2 0.1 32.5
simulation 2 11.7 2.2 0.1 9.4 45.8 2.2 0.1 43.5
simulation 3 11.9 6.5 0.0 5.4 39.0 6.5 0.0 32.5
simulation 4 18.3 10.1 1.3 6.9 40.5 10.1 1.3 29.1

different speakers in our preliminary experiments. Simulation 4 con-
tains speaker overlaps and therefore has a decreased performance.
However we still obtain such an encouraging result, especially in
terms of SET.

4. CONCLUSION

We proposed a method to handle a speaker position change in a meet-
ing diarization system based on the combination of DOA clustering
and SI. By utilizing the SI technique we are able to improve the
diarization performance for speaker changes in a meeting success-
fully. Our future work includes the evaluation in meetings with more
speaker overlap, more real recorded meetings, a comparision with a
SI only method, and the detection of a person, who was not present
in the training period.
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