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ABSTRACT

This paper proposes a novel method for enhancing noisy reverber-
ant speech. One conventional approach is first suppressing noise by
nonlinear filtering techniques such as spectral subtraction and then
dereverberating the noise-suppressed reverberant speech by linear
filtering. However, this approach sometimes suffers from poor per-
formance because the nonlinearly filtered signals no longer have any
linear relationship with the clean speech signals. Unlike this ap-
proach, the proposed method obtains an enhanced speech signal by
using a linear dereverberation filter followed by a nonlinear noise
suppression filter. Moreover, the linear filters are optimized directly
from the observed signals by considering the presence of noise. The
proposed method is derived based on the maximum likelihood (ML)
estimation method. Experimental results showed the superiority of
the proposed method to the conventional approach.

Index Terms— Speech enhancement, dereverberation, noise
suppression

1. INTRODUCTION

Speech signals captured by microphones in rooms are often distorted
by both reverberation and background noise. Fig. 1 shows an acous-
tic system that generates this distortion. As shown in Fig. 1, it is
assumed that there is one speaker and one or more microphones and
that the noise is stationary. The recovery of an original clean speech
signal from observed noisy reververant speech signals will be indis-
pensable for many audio applications.

If the noise is negligible, the speech enhancement task of in-
terest reduces to a speech dereverberation task. Conventionally, the
dereverberation has often been realized by linearly filtering rever-
berant signals both in the time domain [1] and in the frequency (or
subband) domain [2, 3]. This is because reverberation is mathemati-
cally represented as the linear filtering of a clean speech signal with
a room transfer function (RTF). As long as the speaker and micro-
phones do not move during the observation, linear filtering based
dereverberation yields enhanced speech of better quality than spec-
tral subtraction (SS) based dereverberation (and noise suppression)
methods [4, 5].

As regards the enhancement of noisy reverberant speech, the
method proposed in [6] first suppresses the noise by the SS-type non-
linear filtering of the observed signals to estimate the noise-free re-
verberant speech signals. Then, it processes the estimated noise-free
reverberant speech through a linear dereverberation filter to estimate
the reverberation components contained in the noise-free reverber-
ant speech estimates. Our recently developed speech enhancement
method [7] suppresses the noise while taking account of the presence
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Fig. 1. Acoustic system of interest.
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Fig. 2. Equivalent acoustic system.

of reverberation. At the same time, it optimizes the dereverberation
filter while taking the estimation errors of the noise-free reverberant
speech signals into consideration. However, this method also obtains
an estimate of the clean speech signal by nonlinear noise suppression
filtering followed by linear dereverberation filtering.

We found that this nonlinear-then-linear filtering approach per-
formed poorly especially when the reverberant signal to noise ratios
were low. There are two reasons for this performance degradation.

1. Because of the nonlinear filtering, the estimated noise-free
reverberant speech signals no longer have any linear relation-
ship with the clean speech signal.

2. The linear filter amplifies the residual noise contained in the
estimated noise-free reverberant speech.

The direct application of a dereverberation filter to noisy reverber-
ant speech signals was proposed in [8]. However, the dereverber-
ation filter is optimized based on correlation matrices obtained by



correlation subtraction. Therefore, the method described in [8] may
encounter the same problem.

In this paper, we propose a novel speech enhancement method
for overcoming these drawbacks of the conventional approach. The
proposed method calculates an enhanced speech signal by linearly
filtering the observed signals followed by nonlinear noise suppres-
sion filtering. Importantly, the linear filter is optimized directly from
the observed signals by considering the presence of noise. The ba-
sic idea behind the proposed method is as follows. First, we trans-
form the acoustic system in Fig. 1 into the equivalent acoustic system
shown in Fig. 2. Although a detailed description of this system is de-
ferred to Sect. 2, we emphasize here that the reverberation and noise
systems are arranged in reverse order in Fig. 2. Then, we set up a sta-
tistical model of this acoustic system and estimate the model param-
eters with the maximum likelihood (ML) estimation method. Using
the estimated model parameters, we obtain an enhanced speech sig-
nal by processing the observed signals through the inverse of the
acoustic system shown in Fig. 2, which consists of a linear derever-
beration filter followed by a nonlinear noise suppression filter.

2. TASK FORMULATION

2.1. Noisy reverberant speech enhancement

Suppose that there is one speaker and M ≥ 1 microphones. Let
s(n) be a clean speech signal. A vector of M signals at microphone
positions, � (n) = [y1(n), · · · , yM (n)]T , is generated as

� (n) =
∞�

k=0

�
(k)s(n − k) + � (n), (1)

where
�
(k) = [h1(k), · · · , hM (k)]T is the vector of the k-th coeffi-

cients of the RTFs, � (n) = [d1(n), · · · , dM (n)]T is the noise signal
vector, and superscript T stands for the non-conjugate transposition
operator.

Now, suppose that � (n) is observed at times n = 0, · · · , N −1.
Then, the noisy reverberant speech enhancement task is defined as
estimating s(n) for n = 0, · · · , N − 1.

2.2. Models and assumptions

The proposed method is derived based on the short-time Fourier
transform (STFT) domain signal representation. Thanks to the STFT
domain signal representation, we can employ an effective reverbera-
tion model [3], which is proven to be suitable for dereverberation.

Let st,l, d
(m)
t,l and y

(m)
t,l be the short-time spectral compo-

nents of s(n), dm(n), and ym(n), respectively, at the t-th frame
and the l-th frequency band. We put the noise spectral compo-
nents into a vector as � t,l = [d

(1)
t,l , · · · , d

(M)
t,l ]T . In the same

way, we collectively represent the observed spectral components
as � t,l = [y

(1)
t,l , · · · , y

(M)
t,l ]T . Now, the noisy reverberant speech

enhancement task is redefined in the frequency domain as follows.
Let L and T denote the number of frequency bands and the number
of short-time frames corresponding to time-domain sample number
N . Then, the task is to estimate all clean speech spectral compo-
nents, S = {st,l}0≤t≤T−1,0≤l≤L−1 , from the observed spectral
components, Y = { � t,l}0≤t≤T−1,0≤l≤L−1 .

In [3], it was shown that observed spectral component vector�
t,l is approximately related to clean speech spectral component st,l

by �
t,l =

Kl�
k=1

GH
k,l(

�
t−k,l − � t−k,l) + � lst,l + � t,l, (2)

where Gk,l and � l are an M -dimensional square matrix and a col-
umn vector, respectively. (2) indicates that noise-free reverberant
speech spectral component vector ( � t,l − � t,l) is the output of a
multi-channel auto-regressive (AR) system driven by � lst,l. Note
that � l corresponds to the so-called steering vector in the reverber-
ation free case. Hereafter, we call Gk,l and � l a room regression
matrix and a steering vector, respectively.

(2) is equivalentlly rewritten as�
t,l =

Kl�
k=1

GH
k,l
�

t−k,l + � t,l (3)� t,l = � lst,l + � t,l, (4)

where � t,l = � t,l − � Kl

k=1 GH
k,l � t−k,l. The set of (3) and (4) means

that the observed speech, � t,l, is generated as follows. The clean
speech, st,l, is first scaled by the steering vector, � l. Then, it is con-
taminated by filtered noise � t,l to yield noisy speech � t,l. Finally,
the noisy speech is reverberated via the multi-channel AR system,
given by Gl(z) = (IM − � Kl

k=1 GH
k,lz

−k)−1, where IM is the M -
dimensional identity matrix. This equivalent generative system is
depicted in Fig. 2. Note that if the original noise, � t,l, is stationary,
the filtered noise, � t,l, also becomes stationary. Hereafter, we refer
to the filtered noise simply as noise.

To make the estimation task solvable, we assume the following
conditions, which have been widely accepted in the literature. Be-
low, Θ denotes the set of all model parameters, which will be defined
later (see (10)).

1. The short-time power spectral density (PSD) of a clean
speech signal has an all-pole form of order P . Therefore, if
we let ω be an angular frequency, the PSD at the t-th frame,
denoted by sλt(ω), is written as

sλt(ω) =
sσ

2
t

|At(ejω)|2
(5)

At(z) =1 −
P�

k=1

at,kz−k, (6)

where at,k and sσ
2
t are called a linear predictor coefficient

(LPC) and a prediction residual power, respectively. We also
collectively refer to at,k and sσ

2
t as all-pole parameters.

2. The short-time PSDs and cross spectral densities (CSDs) of
noise signals are time-invariant, or independent of frame in-
dex t. We represent the PSDs and CSDs together in a matrix
as

vΛ(ω) =

�	
 vλ(1,1)(ω) · · · vλ(1,M)(ω)
...

. . .
...

vλ(M,1)(ω) · · · vλ(M,M)(ω)

� � , (7)

where vλ(m,m)(ω) is the PSD of the m-th noise signal and
vλ(m1,m2)(ω) is the CSD of the m1-th and m2-th noise sig-
nals.

3. � t1,l1 and � t2,l2 are statistically independent unless (t1, l1) =
(t2, l2).



4. Similarly, st1,l1 and st2,l2 are also independent unless
(t1, l1) = (t2, l2).

5. For any (t1, l1, t2, l2), st1,l1 and � t2,l2 are independent.

6. Clean speech spectral component st,l has a complex Gaussian
distribution with mean 0 and variance sλt(2πl/L):

p(st,l; Θ) = N � {st,l; 0, sλt(2πl/L)}. (8)

7. Noise spectral component vector � t,l has a multivariate com-
plex Gaussian distribution with mean 0 = [0, · · · , 0]T and
covariance matrix vΛ(2πl/L). Hence, by letting vΛl =

vΛ(2πl/L), we have

p( � t,l; Θ) = N � { � t,l;0, vΛl}. (9)

Now, parameter set Θ is specifically given by

Θ ={ gΘ, bΘ, sΘ, vΘ} (10)

gΘ ={{Gk,l}1≤k≤Kl
}0≤l≤L−1 (11)

bΘ ={ � l}0≤l≤L−1 (12)

sΘ ={at,1, · · · , at,P , sσ
2
t }0≤t≤T−1 (13)

vΘ ={ vΛl}0≤l≤L−1. (14)

gΘ, bΘ, sΘ, and vΘ are the sets of room regression matrices, steer-
ing vectors, speech all-pole parameters, and noise covariance matri-
ces, respectively. For later use, we also denote the set consisting of
the parameters other than the room regression matrices by −gΘ:

−gΘ = { bΘ, sΘ, vΘ}. (15)

3. PROPOSED ALGORITHM

3.1. MMSE estimation of clean speech

Now, we assume that model parameter set Θ is known in advance.
In this case, noisy speech spectral component vector � t,l is available
by using (3). Then, the minimum mean square error (MMSE) es-
timate of clean speech spectral component st,l is obtained by using
the well-known multi-channel Wiener filtering. Indeed, the posterior
probability density function (PDF) of the clean speech is represented
as

p(st,l| � t,l; Θ) =N � {st,l; µt,l( � t,l; Θ), γt,l(Θ)} (16)

µt,l( � t,l; Θ) =
� T

l vΛ−1
l

sλ
−1
t,l + � T

l vΛ−1
l � l

� t,l (17)

γt,l(Θ) =( sλ
−1
t,l + � T

l vΛ−1
l � l)

−1. (18)

µt,l( � t,l; Θ) and γt,l(Θ) correspond to the MMSE estimate of st,l

and the associated mean squared error, respectively.
However, the model parameter set, Θ, is unseen in real-

ity. Therefore, Θ must be estimated from observed data Y =
{ � t,l}0≤t≤T−1,0≤l≤L−1 . We describe the estimator of Θ in
Sect. 3.2. Thus, the overall structure of the proposed speech en-
hancement method consists of a time-frequency analyzer, a model
parameter estimator, an MMSE clean speech estimator, and a time-
domain signal synthesizer.

3.2. ML parameter estimation

We use the maximum likelihood (ML) estimation method to estimate
parameter set Θ. Based on the assumptions described in Sect. 2.2,
we can derive the PDF of observed data Y as

p(Y; Θ) ∝
L−1�
l=0

T−1�
t=0

| xΛt,l |
−1 exp � − � � t,l −

Kl�
k=1

GH
k,l
�

t−k,l � H

× xΛ−1
t,l � � t,l −

Kl�
k=1

GH
k,l
�

t−k,l ��� , (19)

where xΛt,l is the covariance matrix of � t,l, which is given by

xΛt,l = sλt,l � l � H
l + vΛl . (20)

The ML estimate of the parameter set is obtained as Θ̂ that maxi-
mizes the log likelihood function, defined as log p(Y; Θ).

Since it is impossible to calculate the ML estimate Θ̂ analyti-
cally, we use the following expectation maximization (EM)-like it-
erative algorithm. Below, Θ̂(i) denotes the tentative estimate of Θ
after the i-th iteration.

E-step: Calculate the following clean speech posterior PDF given ten-
tative parameter estimate Θ̂(i):

q(i)(S) = p(S|Y; Θ̂(i)). (21)

Now, let us define an auxiliary function, q(i)(Θ), as

q(i)(Θ) = � q(i)(S) log p(Y,S|Θ)dS. (22)

CM-step1: Update the estimate of −gΘ by maximizing the auxiliary
function as

−gΘ̂(i+1) = argmax
−gΘ

q(i)( gΘ̂
(i), −gΘ), (23)

CM-step2: Update the estimate of gΘ by maximizing the log likeli-
hood function as

gΘ̂
(i+1) = argmax

gΘ
log p(Y| gΘ, −gΘ̂

(i+1)). (24)

We can readily prove that this algorithm ensures the monotonic in-
crease and convergence of the log likelihood function.

All steps can be calculated analytically, although we omit the
detailed formulas owing to the space limitation. E-step is performed
by calculating p(st,l| � t,l; Θ̂

(i)), given by (16), over all t and l. As
regards CM-step1, the all-pole parameters in sΘ are updated by us-
ing the Levinson-Durbin algorithm, and each steering vector in bΘ
is updated based on the cross correlation between the tentative esti-
mates of st,l and � t,l. Noise covariance matrices in vΘ are updated
from signals obtained during the first 0.3 seconds, where speech is
assumed to be absent. The update formula for CM-step2 is described
in [9].

4. EXPERIMENT AND CONCLUSION

We conducted an experiment for evaluating the performance of the
proposed speech enhancement method. We selected Japanese utter-
ances spoken by 10 speakers (five male and five female) from the
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Fig. 3. Spectrograms of clean speech (top left), observed speech (top right), speech enhanced with the conventional method (bottom left), and
speech enhanced with the proposed method (bottom right).

ASJ-JNAS database. To strike a balance between the controllabil-
ity of the experimental conditions and the experimental reality, we
played each utterance from a loudspeaker in a room and recorded
the sound with two microphones. We also played uncorrelated pink
noises simultaneously from four loudspeakers in the same room and
recorded the sound with the same microphone setup. Then, the
recorded noise was added to each recorded reverberant speech on
a computer with a reverberant signal to noise ratio of 10 dB. The
reverberation time of the room was around 0.6 seconds, and the dis-
tance between the loudspeaker and the microphone set was 1.8 me-
ters. The waveforms were sampled at 8 kHz. The signal lengths
ranged from 3.16 to 7.16 seconds.

The system parameters were as follows. The frame size and
frame shift for the time-frequency analysis were 256 and 128 sam-
ples, respectively. The assumed number of speech poles, P , was
set at 12. The room regression orders, Kl, were set at Kl = 5
for fl < 100, Kl = 10 for 100 ≤ fl < 200, Kl = 30 for
200 ≤ fl < 1000, Kl = 20 for 1000 ≤ fl < 1500, Kl = 15
for 1500 ≤ fl < 2000, Kl = 10 for 2000 ≤ fl < 3000, and
Kl = 5 for fl ≥ 3000, where fl is the center frequency in Hertz of
the l-th frequency band. Note that setting the room regression orders
at smaller values for higher frequency bands in this way helps us to
save computing time with little performance degradation.

The average cepstral distances (CDs) for the observed speech,
the speech enhanced with our recent method [7], and the speech
enhanced with the proposed method were 7.39, 5.81, and 5.11, re-
spectively. Fig. 3 shows example spectrograms, which indicate that
the proposed method cancelled the effect of reverberation much bet-
ter than the conventional method in several frequency bands. In-
deed, the speech enhanced with the proposed method sounded less
reverberant than the speech enhanced with the conventional method.
These results show the superiority of the proposed method over the
nonlinear-then-linear filtering approach.

Future work includes adaptive parameter estimation to cope with
situations where speakers or microphones move around during ob-
servation. Another future research topic is the adaptive estimation of
the noise PSDs and CSDs.
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