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ABSTRACT

Block-based nonlinear structures as, e.g., the Wiener-Hammer-
stein model, are popular for analyzing a broad class of nonlinear
distortions. On the other hand, these models can also be related to
Volterra filters in diagonal coordinates which represent very general
nonlinear filters with memory. In this work, we propose an approach
for estimating the significant coefficients of the nonlinear Volterra
kernels during adaptation of such block-based filters by relating the
linear impulse response and the diagonals of higher-order kernels.
As the number of coefficients for the higher-order kernels is gener-
ally very large, this information can then be used to prune the num-
ber of necessary coefficients and thus lower the computational com-
plexity. Experimental results for several test signals and nonlinear
systems demonstrate the effectiveness of such an approach in a non-
linear acoustic echo cancellation scenario.

Index Terms— Nonlinear Acoustic Echo Cancellation, Adap-
tive Volterra Filters, Model Selection

1. INTRODUCTION

Acoustic echo cancellation (AEC) is a key technology for a variety
of modern telecommunication systems and improves the quality of
speech dialogues noticeably. While AEC is well-developed for li-
near echo paths, small-size and low-cost audio components suffer
from nonlinear distortions which severely hamper the convergence
of conventional linear echo cancellers [1].

This problem can be overcome by using nonlinear adaptive fil-
ters that adequately model the nonlinear echo path. For example,
Volterra filters are a popular and very general concept of such nonli-
near filtering techniques [2]. Nevertheless, the number of filter coef-
ficients to be identified is exponentially increasing with higher-order
filter kernels which makes the adaptation of all unknowns a cumber-
some, if not impossible, task.

In this paper, we propose a comparably simple method to infer
the significant coefficients in the nonlinear filter kernels from the li-
near filtering branch and to selectively prune the coefficients of the
higher-order parts of the model. Therefore, we will first review both
the block-based description of nonlinear models in Sec. 2 and the
Volterra filtering concept in Sec. 3 before summarizing the scenario
of nonlinear AEC in Sec. 4. The proposed estimation of signifi-
cant coefficients and the subsequent pruning method are explained in
Sec. 5 and results of various experiments are documented in Sec. 6.
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Finally, Sec. 7 concludes this work and provides some outlook on
future research.

2. BLOCK-BASED NONLINEAR MODELS FOR AEC

In order to motivate the proposed method in this contribution, we
will first consider the input/output relations of a so-called Wiener-
Hammerstein model as it is depicted in Fig. 1. Since this model con-
sists of a series of linear and nonlinear operations, it is also referred
to as LNL (linear-nonlinear-linear) model.

x(k) u(k) v(k) y(k)
gκ hl

Fig. 1. Cascaded LNL (Wiener-Hammerstein) block model

According to Fig. 1, the output u(k) of the first linear stage reads

u(k) =

Ng−1X

κ=0

gκ · x(k − κ) (1)

with the impulse response gκ. Furthermore, v(k) is given by

v(k) =

PX

p=1

ap · up(k) (2)

based on the assumption that the nonlinearity is memoryless and can
be modelled sufficiently well by a truncated Taylor series of P -th
order [3]. Inserting (1) into (2) and raising the power yields
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and reveals that the nonlinear input/output relation generally exhibits
some memory, unless the filter gκ equals a unit impulse. Finally, the
output after the second filter is again given by

y(k) =

Nh−1X

l=0

hl · v(k − l). (4)
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Fig. 2. Illustration of the construction of a second-order kernel by superposition of basic kernels gκ1,κ2
weighted by the linear filter hl (left),

comparison with a second-order Volterra kernel in diagonal coordinate representation (right)

Inserting (3) into (4) and re-arranging all of the signal compo-
nents, the complete output of the LNL system is obtained by
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with the p-dimensional basic kernels gκ1,...,κp as defined in (3).
From (5) it can be seen that the filter coefficients which affect pro-
ducts of input samples are essentially given by a superposition of
these basic kernels. As illustrated in Fig. 2 for the second-order case
(p = 2), the gκ1,...,κp are thereby weighted by the linear filter coef-
ficients hl and shifted along the main diagonal.

3. VOLTERRA FILTERS IN DIAGONAL COORDINATES

Despite its advantage in the analysis of signal properties after the in-
dependent building blocks, the above cascade is, however, not well-
suited for adaptive realizations, as the convergence to an optimum
solution cannot be guaranteed [4]. Therefore, Volterra filters (VF)
provide a more reliable approach to nonlinear filtering and can be
understood as a generalization of the linear filtering concept [3]. The
output of such a filter is given by the superposition

y(k) =

PX

p=1

yp(k) (6)

where the individual kernel outputs yp(k) are obtained by

yp(k) =
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which is closely related to multidimensional convolution and is
based on the Cartesian coordinates n1, n2, . . . , np.

Besides this, VFs may also be implemented by adopting the so-
called diagonal coordinates which are formed by re-interpreting the
coordinate indices as n1 := n, n2 := w2 + n, . . . , np := wp + n.
Using these definitions, the p-th order output reads

yp(k) =
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which represents a processing scheme where computations are car-
ried out over distinct diagonals with length Np − wp. As only a

width Wp from the main diagonal of the higher-order kernels is co-
vered, this allows for a flexible configuration of the nonlinear filter
memory and may reduce algorithmic demands, whenever Wp < Np

is a reasonable choice. For example, consider again Fig. 2 where W2

can be identified with Ng of the LNL model and the elements of the
diagonal w2 = 4 are shaded in grey.

In order to simplify the notation of (8) in the following, we de-
fine the index vector w :=

ˆ
w2, . . . , wp

˜T
, the filter coefficients

h(VF)
p,w,n := h(VF)

p,n,w2+n,...,wp+n of each diagonal and the diagonal
input signals xp,w(k − n) := x(k − n) ·

Qp
q=2 x(k − wq − n)

accordingly. This yields the Volterra kernel outputs in the form of:

yp(k) =
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. . .
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h(VF)
p,w,n · xp,w(k − n). (9)

For the sake of completeness, we point out that in both of the above
representations, the symmetry of higher-order kernels [3] has been
exploited by invoking only the unique coefficients in (7) and (8).

4. NONLINEAR ACOUSTIC ECHO CANCELLATION

Let us now consider an AEC task as depicted in Fig. 4 where the total
echo path comprises an amplifier, a loudspeaker, the room impulse
reponse (RIR) and a microphone. Since such a setup will exhibit
a considerable amount of nonlinear distortions in presence of low-
cost hardware, the performance of a purely linear adaptive filter is
severely hampered. Thus we employ an adaptive VF in diagonal
coordinates as nonlinear acoustic echo canceller (NLAEC).
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by(k)
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Fig. 3. Scenario for nonlinear acoustic echo cancellation (NLAEC)

Using the output by(k) of the adaptive VF after (6) and (9) with
the current coefficients bh(VF)

p,w,n(k) yields the residual error

e(k) = d(k) − by(k), (10)

where the microphone reference is given by d(k) = y(k) + n(k).
The coefficient updates for all kernels p and diagonals w are then
performed according to [5]

bh(VF)
p,w,n(k + 1) = bh(VF)

p,w,n(k) + µp(k) · e(k) · xp,w(k − n) (11)



where the kernel-dependent step sizes are given by

µp(k) :=
αp

Sp(k) + δ
. (12)

Hence, the effective step size includes both a (fixed) parameter αp

and the normalization to the instantaneous kernel input energy
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(13)

as well as some small regularization constant δ. The given algo-
rithm thus represents an SNLMS adaptation scheme which performs
a separate normalization of all kernels [6].

Inspection of the Volterra filtering equations in Sec. 3 reveals
that the number of coefficients in the higher-order kernels is large
and grows exponentially with the size Np of the kernels. Regar-
ding acoustic applications (like an NLAEC scenario), the challenges
in adaptive nonlinear filtering become apparent as the length of the
linear RIR also requires a great amount of memory for the nonlinear
kernels.

5. PRUNING OF HIGHER-ORDER DIAGONAL
COEFFICIENTS

In order to overcome the drawback of a potentially very large number
of filter coefficients which have to be estimated by the adaptation
algorithm, we will now consider the relation between cascaded LNL
models and VFs. Comparing the filter coefficients in (5) and (7)
which process the same input products, we see that nq = l + κq

holds for all q ∈ {1, . . . , p} within the p-dimensional kernel of size
Np = Ng + Nh − 1. Thus, the following relations are found for the
kernel coefficients and the LNL model parameters

h(VF)
p,n1,n2,...,np

≡ a(sym)
p ·

Nh−1X

l=0

hl · gn1−l,n2−l,...,np−l (14)

h(VF)
p,w,n ≡ a(sym)

p ·

Nh−1X

l=0

hl · gn−l,(w2+n)−l,...,(wp+n)−l (15)

where, for brevity, a(sym)
p captures another factor accounting for the

number of possible index permutations due to the symmetry in the
Volterra filtering [3]. Essentially, these identities imply that each
LNL model has an equivalent P -th order Volterra representation
whose coefficients are given by products of the LNL parameters gκ,
ap and hl. For illustration, consider the marked coefficient in the
second-order kernel of Fig. 2 where n1 = 2, n2 = 3 and therefore
w2 = 1 and n = 2. Using (14), it can be obtained by

h(VF)
2,2,3 = a2 · 2 · (h0 · g2,3 + h1 · g1,2 + h2 · g0,1) (16)

which represents the weighted superposition of three basic kernels
and includes a factor of 2, since the coefficient appears twice in the
LNL structure.

Without loss of generality, we can assume that the magnitudes of
the linear filter coefficients are bounded, i.e. 0 ≤ |gκ| , |hl| < 1 for
all valid κ, l. Note that this can always be ascertained, since the a(sym)

p

may absorb any additional scaling. Regarding the multiplications
in the kernels gκ1,...,κp , we therefore notice that relatively sparse
linear filters gκ will result in even sparser basic kernels gκ1,...,κp ,
as the magnitudes of the products tend to zero. Taking the size of
these basic kernels into account, it can moreover be seen that the
summation in (14) or (15) is limited to a maximum number of Ng

contributions. Hence, under the assumption that the first linear stage
of the LNL structure is sparse and relatively short compared to Nh,
we conclude that the general shape of higher-order diagonals in the
equivalent VF resembles the envelope of the linear kernel:

h(VF)
1,n = a1 ·

Nh−1X

l=0

hl · gn−l = a1 ·
`
hn ∗ gn

´
. (17)

Note that the above assumption Ng < Nh is valid for an NLAEC
scenario, if gκ models the amplifier and the loudspeaker.

In order to exploit this similarity for complexity reduction, we
now propose a simple method for coarsely estimating the importance
of higher-order diagonal elements from the linear branch of the VF.
Since the VF (and thus also the linear kernel) is realized adaptively
in the regarded NLAEC scenario, there is a need for a robust quan-
tity which can be used to infer the general shape of all higher-order
diagonals bh(VF)

p,w,n(p ≥ 2) from bh(VF)
1,n . For this purpose, we monitor

the coefficient energy of the linear filter taps by calculating

eEn(k) =
“
bh(VF)

1,n (k)
”2

+ 0.9 · eEn−1(k) (18)

which applies some 1st-order IIR low-pass filtering along n, in order
to obtain a smoother shape. Note that due to the relatively fast con-
vergence of the linear kernel, the time-variance of eEn(k) can be con-
sidered negligible for a coarse estimation of the envelope. Through
analysis of the measure, the significant coefficients of the higher-
order diagonals can be inferred from the shape of the coefficient en-
ergy envelope in the linear kernel. Introducing the binary masking

βn(k) :=

(
1, if eEn(k) ≥ χ · max

i

n
eEi(k)

o

0, else
(19)

reduces the total number of VF coefficients as it serves as a switch
for in- or exclusion of the corresponding diagonal elements. This
coefficient pruning can be controlled by the threshold parameter χ
which denotes the relevant fraction of the maximum tap energy.

Consequently, for all higher-order kernels (p ≥ 2) the filtering
from (9) is modified as follows

byp(k) =

Wp−1X

w2=0

. . .

Wp−1X

wp=wp−1

Np−1−wpX

n=0

βn(k) · bh(VF)
p,w,n(k) · xp,w(k−n)

(20)
and the SNLMS updates are performed according to:

bh(VF)
p,w,n(k+1) = bh(VF)

p,w,n(k)+βn(k)·µp(k)·e(k)·xp,w(k−n). (21)

As can be seen, all diagonal elements corresponding to βn(k) = 0
are removed from the filtering and updating steps. Therefore, this
technique selectively regards only those Volterra kernel coefficients
with a defined significance and will be referred to as pruning of
higher-order diagonals (PHD).

6. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the proposed pruning method,
several experiments with simulated LNL models and Volterra sys-
tems measured from real hardware have been conducted. All re-
sults have been obtained by examining the NLAEC setup from Fig.4
where the echo path has been simulated by means of the extracted
kernels. Moreover, it has been ascertained that the signal compo-
nents of y(k) exhibit a linear-to-nonlinear power ratio of 10 dB and
some white noise n(k) is added with an SNR of 30 dB which con-
stitutes a realistic scenario for up-to-date mobile phones. The step
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Fig. 4. Illustration of kernel diagonals (top), coefficient energy and
pruning threshold for a simulated LNL system (bottom)

sizes of the adaptation have been set to α1/2 = 0.3/0.2 for all ex-
periments.

In the first experiment, an LNL model with Ng = 16, Nh = 241
has been simulated and the nonlinearity was given by a polyno-
mial with a1 = 1.3 and a2 = −0.5. According to these parame-
ters, the sizes of the adaptive second-order VF has been chosen as
N1/2 = 256/128 and W2 = 16. Fig. 4 visualizes both the similar
shapes of the linear kernel and second-order diagonals as well as the
corresponding energy measure bEn and the resulting pruning to the
significant coefficients for a threshold level χ = 0.1. Since non-
zero values of βn only occur in highly populated regions of h(VF)

1,n ,
the number of coefficients in the adaptation is lowered from a total
of 2184 to 1312. Although this implies computational savings of
approx. 40%, both the full and the pruned adaptation yield com-
parable echo cancellation performance as shown in Fig. 5 for both
speech-like coloured noise and real speech.
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Fig. 5. ERLE for a simulated LNL system with speech-like coloured
noise (top) and male speech (bottom)

Finally, Fig. 6 illustrates the resulting ERLE if the PHD method
is applied to a real Volterra sytem with N1/2 = 320/64 and W2 =
32 as obtained by measurements from a small loudspeaker. Clearly,

the performance of the PHD method lacks some of its potential in
this situation as the assumed Wiener-Hammerstein model seems to
be an inappropriate model for the real nonlinearity. Nevertheless the
VF using the PHD still provides noticeable gains for segments of
highly nonlinear distortions compared to a linear approach. Further-
more, considering the reduction of coefficients (again approx. 40%),
the pruning can also be seen as a means for trading filter complexity
against performance.
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Fig. 6. ERLE for a real Volterra system with male speech

7. CONCLUSIONS

We discussed the relation between Wiener-Hammerstein or LNL
models and Volterra filters in diagonal coordinates. Based on the
similarity of the coefficient envelopes in the linear kernel and on
higher-order diagonals, a simple method has been proposed for de-
tecting the most important filter coefficients in the nonlinear kernels.
Although pruning the less significant parts of the nonlinear adaptive
filter results in a reduction of the algorithmic complexity, experi-
ments for simulated and measured Volterra systems have shown that
the echo cancellation performance is largely unaffected. Future work
will focus on the refinement of this technique and on the possibility
of translating these results to DFT-domain implementations.
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[5] F. Küch and W. Kellermann, “Nonlinear acoustic echo cancel-
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