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ABSTRACT

In this paper a general cost function for adaptive multi-
microphone noise reduction is proposed. From this cost func-
tion, many existing adaptive multi-microphone noise reduction
techniques can be derived, such as linearly constrained minimum
variance (LCMV) beamforming, transfer-function LCMV, soft-
constrained beamforming and speech-distortion weighted multi-
channel Wiener filtering as well as combined approaches.

1. INTRODUCTION

In speech communication applications, such as teleconferencing,
hearing aids, handsfree telephony, the presence of background
noise may seriously degrade the quality and intelligibility of the
speech signal. To enhance the speech recordings, several adap-
tive multi-microphone noise reduction techniques have been pro-
posed in the literature. Two categories of adaptive techniques
can be distinguished: adaptive beamforming and multi-channel
Wiener filtering based techniques.
Adaptive beamforming techniques typically solve a linearly
constrained minimum variance (LCMV) optimization criterion,
minimizing the output power subject to the (hard) constraint that
signals coming from a certain region or direction (i.e., ideally the
direction of the desired speech source) are preserved [1, 2]. The
classical LCMV beamformer assumes free-field propagation.To
improve performance in the presence of reverberation, an exten-
sion to the classical LCMV beamformer that incorporates arbi-
trary transfer functions, referred to as transfer functionLCMV
(TF-LCMV), has been suggested [3]. An efficient realizationof
the LCMV is the Generalized Sidelobe Canceller (GSC) [1, 2].
A second category are multi-channel Wiener filtering (MWF)
based techniques such as the speech-distortion weighted MWF
(SDW-MWF) [4] and the soft-constrained beamforming tech-
niques [5]. In contrast to adaptive beamforming techniques,
these techniques exploit both spectral and spatial differences be-
tween the speech and the noise sources, so that inevitably some
speech distortion will be introduced.
In this paper, we show that the above mentioned adaptive noise
reduction techniques as well as some combinations can be de-
rived from one general cost function, trading off between output
noise power and a speech distortion. Basically, the noise reduc-
tion techniques differ from each other in the use of an a-priori
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and/or online estimated speech model and the use of a soft or
hard constraint on the amount of speech distortion.

2. GENERAL COST FUNCTION

2.1. Signal model

Let Xi(f), i = 1, . . . , M denote the frequency-domain micro-
phone signals1

Xi(f) = Xs
i (f) + Xn

i (f) (1)

and letX(f) ∈ C
M×1 be defined as the stacked vector

X(f) =
ˆ

X1(f) X2(f) · · · XM (f)
˜T

(2)

= X
s(f) + X

n(f) (3)

DefiningHs
i (f) as the acoustic transfer function from the speech

sourceS(f) to thei-th microphone,Xs(f) can be written as

X
s(f) = H

s(f)S(f) = H̃
s(f)Xs

1 (f), (4)

with H̃s(f) the vector with transfer function ratios relative to
the first microphone

H̃
s(f)=H

s(f)/Hs
1(f)=

h

1
Hs

2
(f)

Hs
1
(f)

. . .
Hs

M (f)

Hs
1
(f)

iT

. (5)

To simplify notation, we define the power spectral density (PSD)
of the speech and the noise in thei-th microphone signal as

P s
Xi

(f) = ε{Xs
i (f)X∗,s

i (f)}, (6)

P n
Xi

(f) = ε{Xn
i (f)X∗,n

i (f)}. (7)

In addition, we define the noise and speech correlation matrix
as:

R
n(f)= ε{Xn(f)Xn,H(f)}, (8)

R
s(f)= ε{Xs(f)Xs,H(f)} =P s

X1
(f)H̃s(f)H̃s,H(f). (9)

2.2. Free-field propagation model

Single point source

Assuming free-field propagation, the contributionXi(f,p) of a
point sourceS(f,p) at locationp in thei-th microphone signal
(with coordinatespi) equals

Xi(f,p) = Ai(f,p)ai(p)e−j2πfτi(p)S(f,p), (10)

1In the sequel, the superscriptss andn are used to refer to the speech
and noise contribution of a signal.
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whereAi(f,p) represents the characteristic of thei-th micro-
phone,ai(p) is the attenuation of the point sourceS(f,p) at
the position of thei-th microphone (near-field effect) and

τi(p) =
‖p− pi‖

c
(11)

with c the speed of sound (340 m/s), is the propagation delay
from the point sourceS(f, p) to thei-th microphone. Defining
the first microphone signalX1(f,p) as reference signal,

X(f,p) = d̃(f,p)X1(f,p) (12)

whered̃(f,p) is the steering vector

d̃(f,p) =

2

6
6
6
6
4

1
A2(f,p)
A1(f,p)

a2(p)
a1(p)

e−j2πf(τ2(p)−τ1(p))

...
AM (f,p)
A1(f,p)

aM (p)
a1(p)

e−j2πf(τM (p)−τ1(p))

3

7
7
7
7
5

. (13)

Multiple point sources

If several point sourcesS(f, p) at positionsp ∈ P are active,
the microphone signalsX(f) can be modeled as:

X(f) =

Z

p∈P

d̃(f,p)X1(f,p), (14)

with X1(f,p) defined by (10). For uncorrelated point sources

ε{X1(f,pk)X1(f,pl)} = PX1
(f,pk)δkl. (15)

2.3. Multi-microphone noise reduction

In a multi-microphone noise reduction system, the microphone
signalsXi(f) are filtered by (adaptive or fixed) filtersWi(f)
and combined in order to obtain an enhanced speech signal
Z(f). Define

W(f) =
ˆ

W1(f) W2(f) · · · WM (f)
˜H

, (16)

then the outputZ(f) of the multi-channel noise reduction algo-
rithm is

Z(f) = W
H(f) X

s(f)
| {z }

Zs(f)

+W
H(f)Xn(f)

| {z }

Zn(f)

. (17)

The goal of the filterW(f) is to minimize the output noise
power as much as possible without severely distorting the speech
signal. The amount of speech distortion is measured with respect
to a reference speech signalDs(f). This reference signal can be
the speech componentXs

1(f) in the first microphone, the speech
source signalS(f) or the speech component in the output of a
fixed beamformer (e.g., the speech reference in the spatially pre-
processed SDW-MWF[4]).

2.4. General cost function

A general cost functionJ(W(f)) for the filterW(f) is (18) on
the following page. The first two terms inJ(W(f)) correspond
to the output noise energy. This output noise energy can be:

• estimated online (i.e., the termWHRn(f)W(f))

• and/or based on a prior knowledgeRn
m(f) of the noise

correlation matrix, which is constructed through calibra-
tion measurements or mathematical models.

In this paper, we focus on an online estimated noise model.
For extensions with a pre-defined noise model (including fixed
beamformers), we refer to [6].
The last two terms inJ(W) denote the distortion energy
between the output speech componentWH(f)Xs(f) (or
WH(f)Xs

m(f)) and a reference speech signalDs(f) (or
Ds

m(f)). Again, the output speech distortion energy may be

• estimated online (i.e., as ε{(Ds(f) −
WH(f)Xs(f))(Ds(f)−WH(f)Xs(f))H})

• and/or based on prior knowledgeXs
m(f) for

the microphone signals (i.e., asε{(Ds
m(f) −

WH(f)Xs
m(f))(Ds

m(f) − WH(f)Xs
m(f))H}).

Again, this model can be constructed based on calibration
data or based on mathematical models.

Parametersµ1, µ2 trade off between speech distortion and noise
reduction: the largerµ1 or µ2, the more emphasis is put on
speech distortion. Depending on the use of prior knowledge of
the speech correlation matrix and the use of a hard constraint
on the speech distortion term (i.e.µ1,2 = ∞ or µ1,2 6= ∞),
different adaptive multi-microphone noise reduction techniques
can be obtained, as indicated in Table 1. When using a hard
constraint (i.e.,µ1 = ∞ or µ2 = ∞), noise suppression is
only achieved in the subspace orthogonal to the defined or ac-
tual speech subspace. Signals in the (defined or actual) speech
subspace are passed through undistorted by the noise reduction
algorithm. The use of a soft-constraint (µ1 6= ∞ or µ2 6= ∞)
typically results in a spectral filtering of the desired speech com-
ponentDs(f) since the speech and noise subspace are gener-
ally not orthogonal (often, the noise subspace spans the complete
space).
In the next sections, the different techniques are explained in
more detail.

3. A-PRIORI SPEECH MODEL ( µ1 = 0)

The classical LCMV beamformer [1, 2] and the soft-constrained
beamformer [5] exploit a-priori knowledge about the speech
statistics. Assumptions are made about the microphones (mi-
crophone characteristics, positions), the location of thedesired
speaker and the room acoustics (e.g., no reverberation). These
assumptions are often violated in practice so that the perfor-
mance may be suboptimal.

3.1. Hard constraint (µ2 = ∞): LCMV

The LCMV beamformer [1, 2] minimizes the output noise power
subject to the constraint that signals coming from a certainloca-
tion or region of interest are preserved. This corresponds to the
cost function (18) withµ2 = ∞ andµ1 = 0. Typically, the
free-field propagation model (12)-(13) is assumed for the speech
signal:

X
s
m(f) = d̃

s(f,ps
m)Xs

m,1(f), (19)

whereps
m refers to the position of the speech source. The refer-

ence signalDs
m(f) equalsXs

m,1(f).
The filterW(f) equals

“

R
n(f) + µ2P

s
X1

(f)d̃s
d̃

s,H
”
−1

µ2P
s
X1

(f)d̃s(f,ps). (20)
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J(W(f)) = (1− λ)WH(f)Rn(f)W(f) + λW
H(f)Rn

m(f)W(f) +

µ1ε{(D
s(f)−W

H(f)Xs(f))(Ds(f)−W
H(f)Xs(f))H}+ µ2ε{(D

s
m(f)−W

H(f)Xs
m(f))(Ds

m(f)−W
H(f)Xs

m(f))H}. (18)

Speech model Hard/Soft constraint on speech distortion Technique

A-priori µ1 = 0 µ2 = ∞ LCMV
(Section 3) µ1 = 0 µ2 6= ∞ Soft-constrained beamforming

Online µ1 = ∞ µ2 = 0 TF-LCMV
(Section 4) µ1 6= ∞ µ2 = 0 SDW-MWF

Combination µ1 6= ∞ µ2 = ∞ SDR-GSC
(Section 5) µ1 6= ∞ µ2 6= ∞ Combination SDW-MWF/soft-constrained

Table 1: Classification of adaptive multi-microphone noisereduction techniques.

Applying the matrix inversion lemma
“

R
n(f) + µ2P

s
X1

(f)d̃s(f,ps)d̃s,H(f, ps)
”
−1

=R
n−1

(f)

−
Rn−1

(f)µ2P
s
X,1

(f)d̃s(f,ps)d̃s,H(f,ps)Rn−1

(f)

1 + µ2P s
X1

(f)d̃s,H(f, ps)Rn−1(f)d̃s(f, ps)
, (21)

and settingµ2 = ∞, results in

W(f) =
Rn−1

(f)d̃s(f,ps)

d̃s,H(f,ps)Rn−1(f)d̃s(f,ps)
. (22)

3.2. Soft constraint (µ2 6= ∞): soft-constrained beam-
former

In [5], MWF techniques are proposed that use a (partially) pre-
computed speech correlation matrix. These techniques, called
soft-constrained beamforming, minimize the output noise power
with a soft constraint on a (partially) modelled speech distortion
term. This corresponds to (18) withµ2 6= ∞ andµ1 = 0. A
fixed model is used for the spatial characteristicsH̃s(f) of the
speech while the speech PSDP s

X1
(f) is estimated online. The

speech source is modeled as an infinite number of (uncorrelated)
point sources with true PSDP s

X1
(f) clustered closely in space

within a pre-defined areaP:

X
s
m(f) =

Z

p∈P

Xs
m,1(f,p)d̃s(f,p)dp (23)

Ds
m(f) =

Z

p∈P

Xs
m,1(f,p)dp (24)

with

ε{Xs
m,1(f,pk)Xs,∗

m,1(f,pl)}=P s
X1

(f)δkl ∀pk,pl∈P. (25)

To separate the estimation of the spectral and spatial character-
istics, the technique is implemented in the frequency-domain.
The filterW(f) equals

W (f) = (µ2R
s
m(f)+R

n(f))−1µ2ε{X
s
m(f)Ds,∗

m (f)}. (26)

Assuming uncorrelated point sources,Rs
m(f) and

ε{Xs
m(f)Ds

m(f)} in (26) can be computed as:

R
s
m(f)=

Z

p∈P

d̃
s(f,p)d̃s,H(f, p)ε{Xs

m,1(f,p)Xs,∗
m,1(f,p)}dp,

=P s
X1

(f)

Z

p∈P

d̃
s(f,p)d̃s,H(f,p)dp, (27)

ε{Xs
m(f)Ds

m(f)} = P s
X1

(f)

Z

p∈P

d̃
s(f,p)dp, (28)

whereP s
X1

(f) is estimated online.
Instead of using a mathematical speech model, the speech
correlation matrix Rs

m(f) and the cross-correlation
ε{Xs

m(f)Ds,∗
m (f)} can also be computed based on cali-

bration data [7].

4. ONLINE SPEECH MODEL ( µ2 = 0)

In this section, techniques that use an online estimate of the
speech statistics are discussed, i.e., the TF-LCMV [3] and the
SDW-MWF [4]. Since the source signalS(f) is unknown, these
techniques estimate the speech component in one of the micro-
phones (e.g., the first microphone), i.e.,Ds(f) = Xs

1 (f) (or
in the output of a fixed beamformer). These techniques typi-
cally exploit a voice activity detection (VAD) mechanism and
assume the noise statistics to be more stationary than the speech
statistics. Hence, VAD errors or highly non-stationary noise may
affect the performance.

4.1. Hard constraint (µ1 = ∞): TF-LCMV

The TF-LCMV beamformer [3] minimizes the output noise
power subject to the constraint that the speech component inthe
first microphone signal is preserved, i.e.,

W
H
X

s(f) = Xs
1(f) or WH

H̃
s(f) = 1, (29)

with H̃s(f) is the relative transfer function ratio vector defined
in (5). This corresponds to (18) withµ1 = ∞, µ2 = 0 and
Ds(f) = Xs

1 (f), resulting in (cf. the derivation in Section 3.1)

W(f) =
Rn−1

(f)H̃s(f)

H̃s,H(f)Rn−1 (f)H̃s(f)
. (30)

To impose the hard constraint (29), the relative transfer function
ratiosH̃s(f) need to be identified. In [3], an unbiased estimate
of H̃s(f) is computed during speech periods by exploiting the
nonstationarity of the desired signal and the stationarityof the
noise.
Remark: The GSC with switching adaptive filters [8] and the
GSC with adaptive blocking matrix [9, 10] also belong to this
class. Here,H̃s(f) is estimated throug a least-squares match
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between the microphone signals and the first microphone signal
[8] or the output of a fixed beamformer[9, 10]. Due to the pres-
ence of noise, this estimate is biased.

4.2. Soft constraint(µ1 6= ∞): SDW-MWF

The SDW-MWF [4] minimizes the output noise power subject to
a soft constraint on the speech distortion, corresponding to (18)
with µ1 6= ∞ andDs(f) = Xs

1(f), resulting in

W(f)=(Rn(f) + µ1R
s(f))−1µ1ε{X

s(f)Xs,H
1 (f)}. (31)

The speech correlation matrixRs(f) is estimated by exploiting
stationarity of the noise and a VAD mechanism.
Assuming thatRs(f) is rank-one,W(f) can be decomposed
into a TF-LCMV with a single-channel SDW postfilter [4]

Rn−1

(f)H̃s(f)

H̃s(f)Rn−1(f)H̃s(f)
| {z }

TF-LCMV

0

@
µ1P

s
X1

(f)

µ1P s
X1

(f) + 1

H̃s,H(f)Rn−1
H̃s(f)

1

A .

| {z }

postfilter

Hence, the soft constraint on the speech distortion term intro-
duces spectral filtering of the speech componentXs

1 (f) (un-
less the speech and the noise subspace are orthogonal such that

1

H̃s,H (f)Rn−1
H̃s(f)

= 0).

5. COMBINATION OF AN ONLINE AND A-PRIORI
SPEECH MODEL

So far, either an a-priori speech model or an online estimated
speech model was used in (18). However, also a combination
of a-priori knowledge and online estimation (based on incoming
data) can be used. This approach allows for a (partial) update of
the speech model while it is expected to increase robustnessto
an erroneous estimation of the speech model (e.g., due to VAD
failures).

5.1. Hard constraint on a-priori model (µ2 = ∞, µ1 6= ∞):
speech distortion regularized GSC (SDR-GSC)

In the SDR-GSC [4], the LCMV beamformer is combined with
the SDW-MWF. A hard constraint is imposed on an a-priori
speech model (i.e.,µ2 = ∞), e.g.,

X
s
m(f) = d̃

s(f, ps)Xs
m,1(f), (32)

Ds
m(f) = Xs

m,1(f). (33)

The hard constraint is imposed through a GSC-structure with

a fixed beamformerWq(f) (e.g.,Wq(f) = d̃s(f,ps)
M

) and a
blocking matrixB(f) with BH(f)Wq(f) = 0, i.e.,

W(f) = Wq(f) + B(f)Wa(f), (34)

with Wa(f) the adaptive noise canceller.
In addition to the hard constraint, a soft constraint (µ1 6= ∞) is
imposed on the online estimated speech distortion between the
speech component in the speech referenceDs(f) = WH

q Xs(f)

and the speech component in the output, i.e.,WH(f)Xs(f).
Using (34), the online estimated speech distortion term in (18)
equals:

ε{WH
a (f)BH(f)Xs(f)Xs,H(f)B(f)Wa(f)}, (35)

which corresponds to the regularization term in the SDR-GSC.
Using (35) in (18), results in the SDR-GSC cost function in[4].

5.2. Soft constraint on a-priori model (µ1 6= ∞, µ2 6= ∞,):
combination soft constrained/SDW-MWF

Settingµ1 6= ∞ andµ2 6= ∞ in (18), results in a combina-
tion of the SDW-MWF (cf. Section 4.2) and the soft constrained
beamformer (cf. Section 3.2). The speech model is then partially
updated based on incoming data and partially computed a-priori
using (23)-(24) or calibration data [7]. The filterW(f) equals

W(f) = (µ1R
s(f) + µ2R

s
m(f) + R

n(f))−1

. (µ1ε{X
s(f)Ds,∗(f)}+ µ2ε{X

s
m(f)Ds,∗

m (f)}) ,(36)

with Rs
m(f) andε{Xs

m(f)Ds,∗
m (f)} computed as (27)-(28) or

computed based on calibration data.
In the future, this combined approach will be compared with
the SDW-MWF and the soft constrained beamformer in terms
of performance and robustness.
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