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ABSTRACT

If all audio appliances in a building are connected to a network
and equipped with microphones it becomes feasible to consider
an active volume control system where, e.g., audio played from
one device does not disturb other people in the neighborhood.
The fundamental problems are the identification of the audio
source and the estimation of the acoustic transfer function. For
the identification problem we propose a method where a unique
imperceivable watermark is embedded in each loudspeaker sig-
nal. For the path estimation we compare two algorithms in a sim-
ulation and find that a simple method based on subband level
differences may be sufficient for many typical cases.

1. INTRODUCTION

Thethoughtless use ofaudio appliances is one of the largest
causes of noise complaints [1]. The reason for playing au-
dio too loud is not always the lack of thoughtfulness, but
rather the absence of practical means of knowing, for ex-
ample, how loud the music played in a living room is per-
ceived in the bedroom, or in neighbor’s bedroom. For the
same reason many people also set the volume inconve-
niently low. In an ideal volume control the audio system
would know how loud it really is at different locations
in the environment. Naturally one could perform a series
of acoustic measurements in the dwelling to find out the
acoustic transfer functionsHAB(ω) from each speakerA
to each point of interestB. Then the transfer functions
could be used for dynamic equalization and level control
with the help of a computational loudness model [2]. Sys-
tems where a networked audio appliances are calibrated
by off-line measurements have been proposed recently by
several authors, e.g., [3]. In this paper we want to avoid the
off-line measurement and perform the path identification
during the normal operation of the system.
A vision that is endorsed by all electronics industries pre-
dicts that all appliances at home will be connected to a
home network. Moreover, appliances are becoming increas-
ingly audio-capablesuch that many devices in our envi-
ronment have (built-in) electro-acoustic transducers such
as microphones or loudspeakers. A text book example of
an UPnP device is a toaster with a built-in mp3-player and
a small speaker [4]. The standard home networking pro-

Figure 1:A networked audio system of two devices.

tocols such as UPnP makes it possible for the devices to
discovereach other, share information, and transfer media
streams. If networked devices are also equipped with mi-
crophones then there are various possibilities to measure
acoustic characteristics of the environment.

2. ONLINE MEASUREMENTS IN A
NETWORKED AUDIO SYSTEM

A typical setup considered in this article is the following.
User A is listening to music in the living room from home
stereos. The aim is to adjust the playback volume such
that it is sufficiently high for User A, but at the same time
does not disturb User B going to sleep in a bedroom. We
assume that User B has, e.g., a network-connected clock
radio which has a built-in microphone. Clearly, the acous-
tic pathH(ω) from the stereos to the clock radio can be
estimated by the comparison of the microphone signal to
the original music signal available over the network. For
volume control it is sufficient that the attenuation is known
in a small number of frequency bands. In this article, the
attenuation of sound is measured at 42 frequency bands
uniformly distributed on the near-logarithmic Equivalent
Rectangular Bandwidth (ERB) rate scale. The same fre-
quency representation is also used in current loudness mod-
els [2].
The signal paths in a system consisting of two devices
are illustrated in Fig. 1. The observed microphone signal
is y(n). The original signalx(n) played from the loud-
speaker of Device A is also basically available to Device
B over the network link. Therefore, it is possible to find
an estimate for the acoustic transfer functionH(ω) =
Y (ω)/X(ω), whereY (ω) andX(ω), are the Fourier trans-
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forms of the signals. The off-line method of performing
this is often called deconvolution, and the online algorithm
converging to the same solution is the adaptive filter. In
both cases it is necessary to sendx(n) over the network
for the actual computation, which increases the network
load. In this paper we use an adaptive filter as a reference
method for path estimation and compare that to a simpli-
fied method where the network load is only a fraction of
that.

3. THE EXPERIMENT

The experimental setup is based on simulations of the prop-
agation of sound in a building. For this, an algorithm is
used which calculates a transfer path from a source in one
room to a receiver in an adjoining room. This is performed
at the sampling rate of 44.1 kHz. The calculation is based
on known properties of building materials and the con-
nections between them. Only transmission paths with no
more than one junction are considered. At each junction
the sound energy is reduced by app. 10 dB. The reverber-
ation in the receiving room is also included in the sim-
ulation. As input data, the building products which the
2 room situation consist of and the geometrical data as
well as measured room impulse responses are used. It is,
thus, rather simple to collect a large amount of examples
for different ranges of sound insulation and to investigate
the performance of proposed methods for different levels
of reverberation and insulation. The algorithm does not
produce a physically exact sound field but it reproduces
the correct colouration and loudness, which are sufficient
for the current study. A more detailed description can be
found in [5].
In the current paper we show one typical example repre-
senting the attenuation of sound in propagation from a liv-
ing room to a bedroom room which has the reverberation
time of T60 = 0.3s. The background noise in the receiv-
ing room is modelled by a pink noise sequence added to
the target signal.

4. FREQUENCY-DOMAIN ADAPTIVE FILTER

In model-based system identification the acoustic path is
approximated as a linear system, for example, an adaptive
FIR filter. In this paper we use frequency domain adaptive
filter (FDAF), see, e.g., [6] for a review. FDAF is known
for a good performance in various applications of acoustic
signal processing. The implementation used in the current
article is aconstrainedalgorithm based on the overlap-
save method and computes the error in the time-domain.
The gains of the adaptation step size matrix are adapted
individually in the control of the variance of the values.
This makes the algorithm well suited for a complex case

Figure 2:The subband analysis system based on compar-
ison of subband signal energies.

of low signal to noise ratio and distracting sources.
For comparison, the obtained frequency domain weights
W(k) can be mapped to the ERB scale to establish the
connection to loudness models.

5. COMPARISON OF SUBBAND ENERGIES

The traditional way of measuring the sound propagation
in a dwelling is based on (third) octave band energy anal-
ysis. For example, van den Eijk introduced a sophisticated
system for the characterizing the disturbance of theneigh-
bour’s radio in 1959 [7]. The measurement system had
eight octave band filters each followed by a thyratron cir-
cuit and a column of counting devices. Each counter started
counting when rectified signal level exceeded 65, 70,· · · ,
and 90 dB, respectively. After a measuring period the counter
values divided by the total count in each column to pro-
duce a cumulative amplitude probability density function
at each octave band. The derivative of that gives the prob-
ability density function (PDF) of level estimates. The van
den Eijk’s machine can be turned into a device for path
identification by replacing the levels by level differences
between the original and the observed microphone sig-
nal. In this paper this is called subband energy analysis
(SBEA) method.
The algorithm tested in this article runs at the sampling
rate of 44.1 kHz. The microphone signal and the original
signal are split into 42 frequency bands where the band-
width of each band is one ERB. The processing for one
band is shown in Fig. 2. The energy envelope within each
band is computed with the temporal resolution of 10 ms
and sent over the network to the receiver. There the micro-
phone signal is processed similarly. The time differences
between the subband envelopes of the original signal and
microphone signal are then compensated by finding the
maximum peak of the normalized cross-correlation func-
tion between the envelopes. The envelopes corresponding
to the original signal are then delayed so that the level dif-
ferences can be computed by simple the subtraction of the
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Figure 3:The PDF of level differences obtained from the
subband analysis system in the case of sound propagation
from one room to another with a 20 dB SNR. The true
transfer function is plotted in the figure.

decibel-valued short-time envelopes. In the current article
the frame size for the envelope processing is one second,
that is, only 100 envelope values at each subband.
Each time a certain level difference value is registered, the
corresponding counter in the statistics unit (see, Fig. 2) is
incremented. The increment step size is adaptive and it
is a function of the magnitude of the maximum peak in
the normalized cross-correlation function. After an analy-
sis period, the unnormalized PDF of level differences can
be read from the counters. The PDFs obtained using a
10 s segment of music are shown (dark gray represents
high probability) in Fig. 3. The original response com-
puted from the impulse response is plotted in the same
figure. The microphone signal was produced using Setup
1 introduced below with a pink noise background distrac-
tor at the dBA level of 20 dB below the music.
In this article the maximum position of the PDF within
each subband is selected as the estimate for the attenua-
tion. The attenuation of sound at different ERB bands in
the simulated setup is shown in Fig. 4 (solid curve). The
panels represent the cases where the level difference be-
tween the sound leaking from the other room is 30, 20, 10,
and 0 dBA above the level of the pink background noise.
The estimates obtained with SBEA (dashed) and FDAF
(dotted) method are plotted in the same figure.
At high levels of leaking sound both methods give very
similar estimates for the attenuation. Closer to the noise
floor, SBEA underestimates the true amount of attenuation
while FDAF is capable to follow slightly below the noise
floor. However, above the noise floor the two methods are
comparable.

Figure 4:Attenuation of sound between a living room and
a bedroom (solid), and the estimates obtained with SBEA
(dashed), and FDAF (dotted) algorithms for four different
SNR values. The responses were measured using a 10s
fragment of hard rock music.

6. IDENTIFICATION BY EMBEDDED
WATERMARKS

Often there are two or more devices rendering the same
audio material, for example, all neighbors watching the
same TV program. Therefore, the identity of the device
which is heard in the microphone signal remains unclear
in both methods described above.
We propose using a very similar technique that is com-
monly used in audio watermarking. We imperceptibly em-
bed a unique watermarkvi (a periodic random white noise
sequence, with a period length of, say,L) into each de-
vice signalxi using a psycho-acoustic model such that
the spectrum level of the watermark follows the masked
threshold in time and frequency. In the receiver the de-
vice is then identified by means of a watermark detector;
the received signaly is correlated with all cyclicly shifted
watermarksvi. If the highest correlation, in terms of stan-
dard deviation, exceeds a thresholdT then it is assumed
that the microphone signaly captured the signalxi.
In more detail, devicei plays the signal̃xi = xi + vi,
where it is assumed that the audio signalsxi are uncor-
related with the watermarkvi. Moreover it is assumed
that the watermarksvi and its cyclicly shifted versions
are uncorrelated as well (at least, the correlation is small).
This property makes it possible to distinguish the different
devices. The microphone captures signaly, which corre-
sponds, apart from background noise, to the sum of wa-
termarked signals̃xi convolved with the corresponding
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acoustic pathshi. Subsequently, this signal is accumulated
in a buffer of lengthL to increase the watermark-to-signal
ratio, and is correlated with one period of watermarkvi

and itsL − 1 cyclicly shifted versions. This operation re-
sults in a correlation bufferbi of lengthL. It is not dif-
ficult to show, that this correlation bufferbi contains a
noisy version of the acoustic impulse responsehi (pro-
vided that the watermark-to-signal ratio is high enough
and the lengthL is large enough to contain the greater part
of the impulse response energy). This bufferbi is normal-
ized by dividing it by its standard deviation. The highest
peak (in absolute sense) in this buffer is compared with
a thresholdT (in our experiment we choseT = 5). If
this peak exceeds this threshold then it is decided that the
microphone signaly contains the audio signalxi (in fact,
we assume here that the elements of the normalized corre-
lation buffer behave as normally distributed uncorrelated
random variables with standard deviation equal to one).
Moreover, since the the correlation buffer contains the im-
pulse responsehi (although noisy), it is possible to make
an estimate on which signalxi is the most disturbing.
Alternatively, the embedded watermarksvi can be used as
the far-end signal of an adaptive filter (we used the FDAF)
with the microphone signaly as the input signal. If the
energy of the watermarkvi in the microphone signaly is
large enough then the filter weights of the adaptive filter
resembles the acoustic pathhi.
The performance of the watermarking method for three
different types of music material is illustrated in Fig. 5.
The curves represent the value of the maximum of the es-
timated response as a function of the distance to the pink
noise floor. If the threshold is set to 5, the source can be de-
tected reliably in spectrally rich heavy music (Entombed)
even at very low levels, but in highly tonal banjo jazz (Bela
Fleck) and symphonic music (Bruckner) samples the de-
tectability is low when SNR is below 30 dB. The differ-
ences result from the different amplitudes of watermark
data in the three signals.

7. CONCLUSIONS

In this article we compared two methods for online esti-
mation of the attenuation of sound in propagating from
one room to another in a building. The first method uses
adaptive filtering and the second method is based on sim-
ple comparison of amplitudes of ERB subband envelopes.
It was found that the two method produce similar results
for signals above the background noise floor in a simu-
lated system for sound insulation in a dwelling. Secondly,
we evaluated the performance of a method for the identi-
fication of a sound source from a microphone signal. The
method which was based on embedding a watermark sig-
nal shaped by the masked threshold curve was found to

Figure 5:The value of the maximum peak as a function of
the distance of the leaking signal to the pink noise floor.

work well for music signals, although, the performance
depends very much on the type of the audio signal.
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