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ABSTRACT

Blind identification is of paramount importance for welldwn
signal processing problems such as Blind Signal Separatidn
Direction Of Arrival (DOA) estimation. This paper presefts
new method forMultiple-Input Multiple-Output Instantaneous
Blind Identification based on second order temporal
statistical variabilities in the data, such as non-whigsnand
non-stationarity. The method basically consists of twgesa
Firstly, based on certain assumptions about the stafistiaec-
ture and diversity of the signals and system, and using swlesp
techniques, the problem is formulated in such a way that eac
column of the mixing matrix satisfies a system of multivaiat
homogeneous polynomial equations [1-3]. Then, this nenlin

It is widely recognized that many possible applicationsefar

MIBI and IBSS [6]. Examples of (parameterized) MIBI can be
found in source localization problems, which are very int@or

in many sensor array systems, such as radar and sonar. Sev-
eral examples of IBSS can be found in the field of biomedical
engineering, where the goal of several applications is teale
independent sources in different kinds of biological slgri&e
EEG’s and ECG’s. Other examples can be found in the sepa-
ration of speech signals, images, etc. Although many malcti
problems can be described more adequately by more complex

hMIMO Blind Identification models such as convolutive and/or

non-linear ones, MIBI can often be used as a good starting poi
e.g. for a frequency domain approach in the convolutive.case

ear system is solved by means of a so-called homotopy method.In previous publications [2, 3], we presented a unifyingavist

Homotopy methods provide a general tool for solving systeins
nonlinear equations by smoothly deforming the known sohsti
of a simple start system into the desired solutions of thgetar
system [4,5]. Our two-stage identification approach alléavs
estimate more sources than sensors, something that isheften
lieved to be impossible with second order statistics. Thehote
is applied to the Instantaneous Blind Signal Separatiope¢sh
signals [6].

1. INTRODUCTION

In this paper, we consider the so-calldltiple-Input Multiple-
Output (MIMO) Instantaneous Blind Identificatioproblem,
which we will briefly denote by the acronyMIBI. In this prob-
lem, a number of mutually statistically independent sowige
nals are mixed by a MIMO instantaneous mixing system and
only the mixed signals are available, i.e. both the mixingtem
and the original source signals are unknowrbbind [6]. The
goal of MIBI is to recover the instantaneous MIMO system, or
its parameters (e.g. in the case of DOA estimation), fronotie
served mixtures of the source signals only. Fig. 1 (see rege)p
shows the MIBI problem setup fa# source andD sensor sig-
nals. The source, sensor and additive noise signals argedkeno
by si[n],...,ss[n], zi[n],...,zp[n] andvi[n], ..., vp[n] re-

MIBI based on exploiting the temporal structure in the ddta o
some arbitrary fixed order. It was shown that, under certsin a
sumptions, employingrth order statistics and sensors, a sys-
tem of D-variatel-homogeneous polynomial equations (see Sec-
tion 3) could be derived, the solutions of which are givenhmy t
columns of the mixing matrix. This problem formulation in a
natural way allows to deal with the practically importanseaf
more sources than sensofs £ D), even in the case of Second
Order Statistics (SOS). Especially in DOA estimation, whga
parameterized version of MIBI, the number of source DOA& th
can be estimated may greatly exceed the number of sensors [3]
In [1], a practical algorithm based on SOS and the Generhlize
Eigenvalue Decomposition (GEVD) was given for the ‘square
MIBI' case with D = S. Likewise, in [3] a MUSIC-like spa-
tial pseudo-spectrum exhibiting sharp peaks at the sout8D
was computed. In [1-3] the main focus was on providing alge-
braic and geometric insight into the derivation and prapsrnbf

the system of polynomial equations. For the general MIBegas
we did not yet provide an algorithm that can solve the system
of equations forS > D. The main purpose of this paper is to
provide a MIBI method that is based on SOS, uses a homotopy
method, is able to handle both the< D andS > D cases, and

is formulated in such a way that it can easily be generalined t
more general scenarios with arbitrary order statistics.

spectively. The instantaneous mixing system is modeled by a The outline of the paper is as follows. Firstly, the struetand

matrix A of sizeD x S. A problem closely related to MIBI is
Instantaneous Blind Signal Separation (IB$&) which deals
with the problem of separating mutually statistically ipde-
dent sources from their observed instantaneous mixturlys on
Contrary to MIBI, the main interest in IBSS is in the sourog-si
nals instead of the mixing system. In fact, once MIBI has been
performed, the source signals can be recovered (appreliyhat
by applying the (pseudo-)inverse of the estimated mixirgjesy

to the observed mixtures. In this paper, the main focus will b
on MIBI, while IBSS will be considered as an application.

assumptions of the MIBI model are explained in Section Z)glo
with some notation. After that, the derivation of the systeim
homogeneous polynomial equations is briefly recapitulated
Section 3, and some of its nice algebraic and geometric prop-
erties are highlighted. Then, in Section 4 we present a hopyot
method for solving the system. Subsequently, in Sectiore5 th
theory is applied to an example of a MIBI scenario with= 3
sensors and = 4 sources, which demonstrates the ability of
handling more sources than sensors with SOS only. Finalty, c
clusions and future research are discussed in Section 6.
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2. STRUCTURE AND ASSUMPTIONSOF MIBI MODEL :’ vi[n] %

A block diagram of the MIBI problem setup is shown in Fig. 1. : s1[n] N ;
Aset{si[n], ..., ss[n]} of S mutually statistically independent A Mixing — n1[n]
source signals is mixed by a MIMO linear instantaneous mix- : i system E

ing system that is represented by a matlix and only a set E i A N zpln]
{z1[n], ..., zp[n]} of D sensor signals corrupted Byadditive i ssln] — :

noise signals in the s¢i1 [n], ..., vp[n|} is available. Both the : vp(n] i

signals and the system are assumed to be real-valued. Mathem [T UnKNown »===e=s=eceaa o

ically, the;\/llBI observation model can be written as follows Figure 1: Block diagram of MIBI problem setup.

x[n] = Z a’ sj[n] +v[n] = As[n] +vn] VncZ, (2.1) is represented by a row vector containing > S (estimated)
i=1 values. For example, the cross-correlation function betwtbe

i1-th andiz-th sensor signals is represented by the correlation

where a A
i row vectorsy, ., £ [ri,[n;ma] <o i, nnmal]. As
1[n] s1[n] vi[n] | is justified in [3], all assumptions made above are quiteaeas
SIS B R ) B O T ) able in several practical applications.
zpn] ss[n] vp|n] a’,

3. SYSTEM OF EQUATIONS FOR SOS

In this section, the derivation of the system of homogeneous
polynomial equations is briefly recapitulated. A more elal®
derivation for more general scenarios and an analysis altjee
braic and geometric properties of the system can be four®| in [
3]. We start the derivation by expressing the sensor cdivela
functions in the source and noise correlation functionsingys
AS1, AS3andAS4 the sensor correlation functiet ;, [n1, na]

are column vectors of sensor signals, source signals, haaldit
noise signals and mixing elements respectively. Subsaridt
superscript indices are used to index the components of-a col
umn and row vector respectively. Furthermore, the symiute-
notes discrete time. The coefficieftdenotes the instantaneous
transfer from thej-th source to the-th sensor. From (2.1), it
easily follows that twandeterminaciesre inherent to the MIBI
model [6], viz. the scalings/norms (including signs) and ¢n- . ) .

der of the columns of the mixing matrix cannot be resolved. In of the, -th 'anqm-th sensor signals can be expressed as follows
general, they do not cause serious problems because for many];or alll <iyyiz < D

applications the most relevant information is containedhia 2 Inym] = 22 i ad s n;m] Y[nym] e T. (3.1)
‘directions’ of the columns or the waveforms of the sourg si e 1o e ’

nals, rather than in their magnitudes or order. This equation implies that{ ;, [n;m] = r{,;, [n;m] for all
Our derivation of the system of polynomial equations satisfi  [n;m] € 7 and1 < 1,42 < D. Hence, the sensor correla-
by the vectora!, .. ., a® is based on severabsumptions which  tion functions and associated row vectors are only ‘esainti
ensure that sufficient temporal and spatial diversity isspre different’ for the set of index pairs:

We express them mathematically in terms of the auto- anderos T3 p 2 {(i1,i2) | 1 <i1,ia < D}, (3.2)

correlation functions of the source and noise signals for di
ferent timesn (allowing the exploitation of (block-wise) non-
stationarity) and/or different lags: (allowing the exploitation
of non-whiteness):

ASL:rs j,[n;m] £ E{sj [n]sj,[n —m]} =0 Vn,mez,

J1J2

with cardinality| Z5 | = 2 D(D+1) (the subscript ‘a’ stands for
‘ascending’). In the sequel, the set containing only therss
tially different sensor correlation row vectar§ ;, , i.e. the ones
with (i1,2) € 73 p, is denoted byC%:

m#£0, 1<ji#j2<S; Kb £ {F, | (i1,32) € I3} (3.3)
ASZ:Zf:lgj riilnm) = 0 Vn€Z m £ 0 = By (3.1), each vector in this set can be expressed as a linear
=0 V1<j<S§; combination of the source auto-correlation vectors:
T — i g0 s
AS3:ry;, [nsm] £ E{vi, [n]vi,[n —m]} = (0”[n])25[m] Tiyiz = ijl a3, @iy Tyj - (3.4)
Vn,meZ, 1<d,iz < D; Due toAS2the dimensioni® of the linear spac€ ({F$; }1<;<s)
AS4:rsi[n;m] £ E{sj[n]viln —m]} =0 Vn,meZ, spanned by the source auto-correlation row vectors egbals t
m#0, 1<i<D, 1<j<5. number of sourcess. Hence, from (3.4) it follows that the

dimensiond” of the linear space (K% ) spanned by the sen-
sor correlation row vectors is smaller than or equalitoi.e.
d® < S. Consequentlythe sensor correlation vectors (and
functions) are linearly dependent wheneY&i,| > S. In all
subsequent derivations, we will assume this explicitly:

Note thatAS2 states that the source auto-correlation functions
are linearly independent for, # 0. The expressiorﬁa”[n])2

in AS3 denotes the (possibly time-dependent) variance of the
noise signals, and[m] denotes the Kronecker delta function.
We assume that the involved correlations functions, whieh a
defined in terms of the mathematical expectation opeta{os, |IC§')| - |1§’D| - lp(D +1)>8S. (3.5)
are (block-)ergodic and can be estimated ‘sufficiently eatet 2

by means of time-averaging over certain blocks of data. én th Hence, by the definition of linear dependence there exist@mn

sequel, all correlation functions are considered on aiceRa- and non-unique sets of coefficierftp;! *2 }(”’22)61“3 indexed
gion Of Support (ROSY £ [[m; mal, ..., [nN; mN]], where by an integer-valued indexsuch that:

[n; m] pairs withm = 0 are excluded. Note that such a ROS is ivin <o -

‘noise-free’ for white noise (se&S3). Each correlation function Z(il,ig)ezg ¥ T = 0 VgeQ, (36
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whereQ £ {1,...,Q} and@ £ |Q| is the maximum number
of linearly independent equations that will be determinedns
Defining the matrice® andC?” as follows:

[@]  [el' el o oPP)
@2 =] : 3.7
L%J Lﬁbl 03 @8DJ
and
P £11 [ ma] i [nn;mu]
Ty Fia[n1;ma] Iia[nn;mu]
c*& = , (3.8)
tHp T'hHp[ni;ma] thpnn;my]
system (3.6) can now simply be written as:
®C* =0y, (3.9)

where0g; denotes the zero matrix wit) rows andN columns.
This shows that the rows @b lie in the left null space oC”,
which can easily be determined from the SVD@f by choos-
ing the left singular vectors that correspond to the smidiegu-
lar values. Sinceank(C*) =dim (L (K% ) )=d" the dimension
Q of the left null space equal&C},| — d* = 1D(D + 1) — d°.

4. HOMOTOPY METHOD

Homotopy methods provide a deterministic means for soleing
system of nonlinear equations by smoothly deforming thewno
solutions of a simple start system into the desired solatidnhe
target system [5]. They are based on the so-calih following
techniques. In this section, we give a brief overview of theib
principles of homotopy methods. Excellent discussions lman
found in several articles and books [4,5]. The target system
i.e. the system to be solved, is denotedify) = 0, and the start
system byg(z) = 0. Homotopy methods operate in two stages.
Firstly, the (expected) number of solutions and the stnecai
the target system are exploited to construct a start systéuis.
start system is embedded in the (convieainotopydefined as:

h(z,\) =~v(1-)) g(z) + Ap(z) vielo1], (4.1)
where) € R is the so-calledontinuation parameteand- is a
randomly chosen fixed constant [5]. Secondly)as increased
from 0 to 1, numerical path following ocontinuationmethods,
trace the pathg(\) defined implicitly byh(z(\), \) = 0 from
the solutions of the start system to the solutions of theetasgs-
tem. In theory, each path converges to a geometricallytistla

Now we show how these observations can be used to derivesolution [5]. Because polynomial systems are very suited fo
a system of multivariate homogeneous second degree polyno-homotopy methods [4], we can use a very simple path following

mial equations satisfied by each column of the mixing matrix
A=1Ja" - aSA. Substituting (3.4) into (3.6) and usimgS2
it immediately follows that:

Z @éliQaglag2:O Vge 9, V1<;<8S.
(il,ig)EIg’D
This system of equations describes the relation betweeunrthe
known coefficients of the matriA and theknownset of co-
efficients in®. Lettingz = [2*,...,2°]" and defining the
D-variate polynomial functions:

(3.10)

fa@) 2 > @iz, VgeQ, (3.12)
(i1,i2)€T5 p
system (3.10) can be written as:
fa(aj) =0 VgeQ, V1I<j<8. (3.12)

Hence, all columna; of A satisfy the systenlif,(z) = 0}4co.
Consequently, if we can find the solutions of this system ¢whi
is known because the coefficientsdnare known), we can re-
coverA from the sensor correlation functions only.
Equation (3.11) reveals that all terms in each funcfipfz) have
degree two. This implies thaf,(z) is homogeneous of degree
two, also noted ag8-homogeneous, meaning that:
fonz) = (0)*fo(z)  Vq€Q, n€ER z€Rp.

From this property, it directly follows that:

fav)=0 Vge Q= fy(nv) =0 VqgeQ, neR.
Hence, ifv is a solution of the systerfif,(z) = 0},c0, then
alsonv is a (an equivalent) solution for all € R. This is a
logical result of the so-callesicaling indeterminacynherent to
MIBI [6]. Because of this, we are allowed to impose a horm con-
straint, sayj|z|| = 1 on the solutions of the system. Since the
set of values of for which f(z) = 0 defines the zero contour
level of a functionf(z), solving the systerd f,(z) = 0},co
boils down to finding the intersections between the zero con-
tour levels of the functiongi (z), . . ., fo(z). The homogeneity
property of the polynomials in our system implies that thes®
contour levels are cones in te-dimensional Euclidian space.
Hence, geometrically, solvingf,(z) = 0},co means finding
the intersections betweé&p cones.

method which proceeds as follows.

Suppose that(\) is a solution ofh(z(\), A) = 0 for a certain
(known) value of\. Then, this solution is an approximate solu-
tion of the slightly deformed systel(z(A+AM), A+A)X) = 0,
where A) is a small increment. The refined solution of the
deformed system can be found by fiedictingz(A + A\)

by means of e.g. an Euler step, and tleenrectingthe predic-
tion by means of any local zero finding method, e.g. Newton’s
method [5]. Proceeding this way from the initially known so-
lutions atA = 0 to the initially unknown solutions ax = 1,

we finally end up at the solutions of the target system. This is
the basic rationale of homotopy methods. Although many much
more sophisticated and optimized methods exist, for ouraiem
stration purposes the above described method suffices.

Now we will apply the ideas outlined above to the system of
polynomial equations derived in Section 3 for an example of a
specific MIBI problem withD = 3 and.S = 4, the details of
which are presented in Section 5. For that example, it can be
shown (see Section 5) that the numiigof independent equa-
tions is2. Let the equations of target systgniz) in (4.1) be
given by p1(z1,22,23) £ fi(z1, 22, 23) and pa(z1, 22, 23) =
fa2(z1, 22, z3) respectively. We choose the following start system:

{91(Z17Z27Z3) 2 (21)? = (B1)*(23)° =0
g2(z1, 22, 23) 2 (22)° — (B2)*(23)° =0

where3; and3; are randomly chosen fixed complex constants
[4,5]. This system has the following solutions far

z1 B B —B1 —p1
z2| = ﬁ2 ; _52 ) ﬂ ) and _52 . (43)

As we have explained in Section 3, we may impose the norm
constraint||z]] = 1. In fact, this means including the equation
(z1)? + (22)” + (23)® = 1 to homotopy system (4.1). In total,
we obtain the following homotopy fox € [0, 1]:

(4.2)

[1>

Y(1 — N)g2(z1, 22, 23) + Afa(z1, 22, 23)
(21)% + (22)® + (23)° — 1
(4.4)

h2(21722,23, )\)
h3(21,22,23,)\)

[hl(zl,zzyz&)\)} [V(l — Ngi(z1, 22, 23) + )\fl(ZbZz,ZS)}
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Algorithm 1 MIBI based on SOS and homotopp& 3, S =4).
1
2:

Compute/estimate sensor correlation ma@ikin (3.8);

Compute® in (3.7) from the SVD ofC”; now the system
{fq(z) = 0}4c0 to be solved is known (sg8.11));
: Define afine gridj on\€[0,1], .9.G2 {0,A\, 2AM\,..., 1};
: For each solutior(0) of the start system (s€4.3)), and
each subsequentc G \ {0}, do:
e Use one step of Eulers method to predi€X) from
z(A—AN) as follows:z := z + 92 - AX;
e Use several steps of Newton’s method to coredot),
i.e. find the solution oh(z()\), \) = 0 by iterating:

Z:=7— [Vzh(z, )\)] “h(z ).

A possible homotopy algorithm for finding all unique solutso

of the systemfi(z) = f2(z) = 0 is given in Alg. 1. The gra-
dient j—j in step 4 can be found from the equation obtained by
taking the derivative oh(z(\), \) = 0 w.r.t. \. Furthermore,
V.h(z, \) denotes the Jacobian matrixlofz, \) w.r.t. z.

5. EXAMPLE
In this section, we will apply the theory developed aboverto a
example of a MIBI scenario withh=3, S =4. Let A be given by:

[—0.6804 0.5774 —0.2673 0.5538'|
A= 0.2722 0.5774 —0.8018 —0.8308 | .
[ 0.6804 0.5774  0.5345 —0.0554J

We have use®0000 samples of artificial source signals gener-
ated according to the following AR(2) model:

sjn] = cjsuln — 1] + 5 s5[n — 2] + w;[n] (5.1)
wherewy,[n] is a stationary white Gaussian noise sequence, and

the pair of coefficienticl- c2) determines the pole positions of

the associated AR(2) éll-pj)ole filter. Thus, the source $ggna
possess an ‘AR(2) temporal structure’. In addition, thers®u
signals are also normalized to have unit variance. Since the
data is stationary, only the nonwhiteness can be exploitéel.
choose the ROS (see Section 2) to be the set of lags
7 2 {1,...,7} (due to stationarity, absolute times are irrele-
vant and omitted). In Fig. 2 the chosen pole pdirs, ;) and

the corresponding source correlation vectors (functi@fisjon

the lag interval{ —7,...,0,...,7} are depicted foi < j < S.

e

Figure 2: Source pole pairs and correlation functions.

The sensor signals[n] are obtained by mixing the source sig-
nals s[n] with A and adding noise/[n] according to model
(2.1). The standard deviations of the noise-free parts ef th
sensor signals: [n], z2[n], andzs[n] are given byl.09, 1.32
and1.04 respectively. The noise signals[n], v2[n], andvs[n]

are mutually statistically independent white Gaussias@aie-
guences with standard deviatiérs. From the sensor signals, we
estimate the sensor correlation functiops’ ;, [m]}1<i; i, <3

for all lags m € 7 by averaging products of the form

x4, [n]zs, [n — m] over all30000 time samples:. These func-
tions form the input for Alg. 1. In order to apply this algdmit,

we first have to determin@, for which we need to know the di-
mensiond” of the linear space spanned by the sensor correlation
row vectors. This dimension depends on the mixing maiix
and the dimensiod® of the linear space spanned by the source
auto-correlation row vectors. In general, it can be shovat th
d® = d° with probability one ifA is drawn from a continuous
probability distribution. In our current examplé; = d° = 4.
Hence, there ar@ = $D(D + 1) — d* = 2 independent poly-
nomial equationsfi(z1, z2, 23) = 0 and f2(z1, z2,23) = 0in

the system to be solved. The coefficients of the two polyno-
mials are obtained from the two left singular vectors that co
respond to smallest singular values@f. More specifically,
suppose that the ‘ordered’ SVD &f” is given in standard form
by C* = UXVT. Then, the rowp, containing the coefficients
of fi1(z1, 22, z3) is the transpose of thel® + 1)-th (5-th) col-
umn of U, and similarly the rowp, containing the coefficients
of fa(z1, 22, 23) is the transpose of theCt, |-th (6-th) column

of U. Now running Alg. 1 yields the following estimate &f:

R [—0.6830 0.2648 0.5752 0.5502]
A= 0.2935  0.8077 0.5794 —0.8337 | .
[ 0.6688 —0.5268 0.5774 —0.0467J

The reader can easily verify that, apart from the indeteacigs
mentioned in Section 2, this is close a estimatAof

6. CONCLUSIONS
We have presented a batch-mode MIBI method that is based on
SOS and a homotopy method. As an example, an algorithm spe-
cific for the scenario with 3 sensors and 4 sources was pegsent
thereby demonstrating the ability to estimate more soutftas
sensors, and the applicability of homotopy methods. Théatet
can easily be generalized to higher order statistics. Actéi
future research is to make the algorithm adaptive.
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