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ABSTRACT

Blind identification is of paramount importance for well-known
signal processing problems such as Blind Signal Separationand
Direction Of Arrival (DOA) estimation. This paper presentsa
new method forMultiple-Input Multiple-Output Instantaneous
Blind Identification based on second order temporal
statistical variabilities in the data, such as non-whiteness and
non-stationarity. The method basically consists of two stages.
Firstly, based on certain assumptions about the statistical struc-
ture and diversity of the signals and system, and using subspace
techniques, the problem is formulated in such a way that each
column of the mixing matrix satisfies a system of multivariate
homogeneous polynomial equations [1–3]. Then, this nonlin-
ear system is solved by means of a so-called homotopy method.
Homotopy methods provide a general tool for solving systemsof
nonlinear equations by smoothly deforming the known solutions
of a simple start system into the desired solutions of the target
system [4, 5]. Our two-stage identification approach allowsto
estimate more sources than sensors, something that is oftenbe-
lieved to be impossible with second order statistics. The method
is applied to the Instantaneous Blind Signal Separation of speech
signals [6].

1. INTRODUCTION

In this paper, we consider the so-calledMultiple-Input Multiple-
Output (MIMO) Instantaneous Blind Identificationproblem,
which we will briefly denote by the acronymMIBI. In this prob-
lem, a number of mutually statistically independent sourcesig-
nals are mixed by a MIMO instantaneous mixing system and
only the mixed signals are available, i.e. both the mixing system
and the original source signals are unknown orblind [6]. The
goal of MIBI is to recover the instantaneous MIMO system, or
its parameters (e.g. in the case of DOA estimation), from theob-
served mixtures of the source signals only. Fig. 1 (see next page)
shows the MIBI problem setup forS source andD sensor sig-
nals. The source, sensor and additive noise signals are denoted
by s1[n], . . . , sS[n], x1[n], . . . , xD[n] andν1[n], . . . , νD[n] re-
spectively. The instantaneous mixing system is modeled by a
matrix A of sizeD × S. A problem closely related to MIBI is
Instantaneous Blind Signal Separation (IBSS)[6], which deals
with the problem of separating mutually statistically indepen-
dent sources from their observed instantaneous mixtures only.
Contrary to MIBI, the main interest in IBSS is in the source sig-
nals instead of the mixing system. In fact, once MIBI has been
performed, the source signals can be recovered (approximately)
by applying the (pseudo-)inverse of the estimated mixing system
to the observed mixtures. In this paper, the main focus will be
on MIBI, while IBSS will be considered as an application.

It is widely recognized that many possible applications exist for
MIBI and IBSS [6]. Examples of (parameterized) MIBI can be
found in source localization problems, which are very important
in many sensor array systems, such as radar and sonar. Sev-
eral examples of IBSS can be found in the field of biomedical
engineering, where the goal of several applications is to reveal
independent sources in different kinds of biological signals like
EEG’s and ECG’s. Other examples can be found in the sepa-
ration of speech signals, images, etc. Although many practical
problems can be described more adequately by more complex
MIMO Blind Identification models such as convolutive and/or
non-linear ones, MIBI can often be used as a good starting point,
e.g. for a frequency domain approach in the convolutive case.

In previous publications [2, 3], we presented a unifying view at
MIBI based on exploiting the temporal structure in the data of
some arbitrary fixed order. It was shown that, under certain as-
sumptions, employingl-th order statistics andD sensors, a sys-
tem ofD-variatel-homogeneous polynomial equations (see Sec-
tion 3) could be derived, the solutions of which are given by the
columns of the mixing matrix. This problem formulation in a
natural way allows to deal with the practically important case of
more sources than sensors (S > D), even in the case of Second
Order Statistics (SOS). Especially in DOA estimation, which is a
parameterized version of MIBI, the number of source DOA’s that
can be estimated may greatly exceed the number of sensors [3].
In [1], a practical algorithm based on SOS and the Generalized
Eigenvalue Decomposition (GEVD) was given for the ‘square
MIBI’ case with D = S. Likewise, in [3] a MUSIC-like spa-
tial pseudo-spectrum exhibiting sharp peaks at the source DOA’s
was computed. In [1–3] the main focus was on providing alge-
braic and geometric insight into the derivation and properties of
the system of polynomial equations. For the general MIBI case,
we did not yet provide an algorithm that can solve the system
of equations forS > D. The main purpose of this paper is to
provide a MIBI method that is based on SOS, uses a homotopy
method, is able to handle both theS ≤ D andS > D cases, and
is formulated in such a way that it can easily be generalized to
more general scenarios with arbitrary order statistics.

The outline of the paper is as follows. Firstly, the structure and
assumptions of the MIBI model are explained in Section 2, along
with some notation. After that, the derivation of the systemof
homogeneous polynomial equations is briefly recapitulatedin
Section 3, and some of its nice algebraic and geometric prop-
erties are highlighted. Then, in Section 4 we present a homotopy
method for solving the system. Subsequently, in Section 5 the
theory is applied to an example of a MIBI scenario withD = 3
sensors andS = 4 sources, which demonstrates the ability of
handling more sources than sensors with SOS only. Finally, con-
clusions and future research are discussed in Section 6.
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2. STRUCTURE AND ASSUMPTIONS OF MIBI MODEL

A block diagram of the MIBI problem setup is shown in Fig. 1.
A set{s1[n], . . . , sS[n]} of S mutually statistically independent
source signals is mixed by a MIMO linear instantaneous mix-
ing system that is represented by a matrixA, and only a set
{x1[n], . . . , xD[n]} of D sensor signals corrupted byD additive
noise signals in the set{ν1[n], . . . , νD[n]} is available. Both the
signals and the system are assumed to be real-valued. Mathemat-
ically, the MIBI observation model can be written as follows:

x[n] =
SX

j=1

a
j
sj [n]+ν [n] = As[n]+ν[n] ∀ n ∈ Z, (2.1)

where

x[n],

264x1[n]
...

xD[n]

375, s[n],

264s1[n]
...

sS[n]

375, ν[n],

264ν1[n]
...

νD[n]

375, a
j
,

264a
j
1

...
a

j

D

375
are column vectors of sensor signals, source signals, additive
noise signals and mixing elements respectively. Subscriptand
superscript indices are used to index the components of a col-
umn and row vector respectively. Furthermore, the symboln de-
notes discrete time. The coefficienta

j
i denotes the instantaneous

transfer from thej-th source to thei-th sensor. From (2.1), it
easily follows that twoindeterminaciesare inherent to the MIBI
model [6], viz. the scalings/norms (including signs) and the or-
der of the columns of the mixing matrix cannot be resolved. In
general, they do not cause serious problems because for many
applications the most relevant information is contained inthe
‘directions’ of the columns or the waveforms of the source sig-
nals, rather than in their magnitudes or order.
Our derivation of the system of polynomial equations satisfied
by the vectorsa1, . . . ,aS is based on severalassumptions which
ensure that sufficient temporal and spatial diversity is present.
We express them mathematically in terms of the auto- and cross-
correlation functions of the source and noise signals for dif-
ferent timesn (allowing the exploitation of (block-wise) non-
stationarity) and/or different lagsm (allowing the exploitation
of non-whiteness):

AS1:rs
j1j2

[n; m] , E
�
sj1 [n] sj2 [n − m]

	
= 0 ∀n, m∈Z,

m 6= 0, 1 ≤ j1 6= j2 ≤ S;

AS2:
PS

j=1 ξj rs
jj [n; m] = 0 ∀n ∈ Z, m 6= 0 =⇒

ξj = 0 ∀ 1 ≤ j ≤ S;

AS3:rν
i1i2

[n; m] , E
�
νi1 [n] νi2 [n − m]

	
=
�
σν [n]

�2
δ[m]

∀n, m∈Z, 1 ≤ i1, i2 ≤ D;

AS4:rsν
ji [n; m] , E

�
sj [n] νi[n − m]

	
= 0 ∀n, m∈Z,

m 6= 0, 1 ≤ i ≤ D, 1 ≤ j ≤ S.

Note thatAS2 states that the source auto-correlation functions
are linearly independent form 6= 0. The expression

�
σν [n]

�2
in AS3 denotes the (possibly time-dependent) variance of the
noise signals, andδ[m] denotes the Kronecker delta function.
We assume that the involved correlations functions, which are
defined in terms of the mathematical expectation operatorE{·},
are (block-)ergodic and can be estimated ‘sufficiently accurate’
by means of time-averaging over certain blocks of data. In the
sequel, all correlation functions are considered on a certain Re-
gion Of Support (ROS)T ,

�
[n1; m1], . . . , [nN ; mN ]

�
, where

[n; m] pairs withm = 0 are excluded. Note that such a ROS is
‘noise-free’ for white noise (seeAS3). Each correlation function

s1[n]

sS [n]

Mixing
system

A

Unknown

ν1[n]

νD[n]

x1[n]

xD[n]

Figure 1: Block diagram of MIBI problem setup.

is represented by a row vector containingN ≥ S (estimated)
values. For example, the cross-correlation function between the
i1-th andi2-th sensor signals is represented by the correlation
row vectorr̃x

i1i2
,
�
rx

i1i2
[n1; m1] · · · rx

i1i2
[nN ; mN ]

�
. As

is justified in [3], all assumptions made above are quite reason-
able in several practical applications.

3. SYSTEM OF EQUATIONS FOR SOS
In this section, the derivation of the system of homogeneous
polynomial equations is briefly recapitulated. A more elaborate
derivation for more general scenarios and an analysis of thealge-
braic and geometric properties of the system can be found in [2,
3]. We start the derivation by expressing the sensor correlation
functions in the source and noise correlation functions. Using
AS1, AS3andAS4, the sensor correlation functionrx

i1i2
[n1, n2]

of thei1-th andi2-th sensor signals can be expressed as follows
for all 1 ≤ i1, i2 ≤ D:

r
x
i1i2

[n; m] =
X2

j=1
a

j
i1

a
j
i2

r
s
jj [n; m] ∀ [n; m] ∈ T . (3.1)

This equation implies thatrx
i1i2

[n; m] = rx
i2i1

[n; m] for all
[n; m] ∈ T and1 ≤ i1, i2 ≤ D. Hence, the sensor correla-
tion functions and associated row vectors are only ‘essentially
different’ for the set of index pairs:

Ia
2,D ,

�
(i1, i2) | 1 ≤ i1, i2 ≤ D

	
, (3.2)

with cardinality
��Ia

2,D

��= 1
2
D(D+1) (the subscript ‘a’ stands for

‘ascending’). In the sequel, the set containing only the essen-
tially different sensor correlation row vectorsr̃x

i1i2
, i.e. the ones

with (i1, i2) ∈ Ia
2,D , is denoted byKx

D :

Kx
D ,

�
r̃

x
i1i2

| (i1, i2) ∈ Ia
2,D

	
. (3.3)

By (3.1), each vector in this set can be expressed as a linear
combination of the source auto-correlation vectors:

r̃
x
i1i2

=
X2

j=1
a

j
i1

a
j
i2

r̃
s
jj . (3.4)

Due toAS2 the dimensionds of the linear spaceL
�
{r̃s

jj}1≤j≤S

�
spanned by the source auto-correlation row vectors equals the
number of sourcesS. Hence, from (3.4) it follows that the
dimensiondx of the linear spaceL (Kx

D) spanned by the sen-
sor correlation row vectors is smaller than or equal tods, i.e.
dx ≤ S. Consequently,the sensor correlation vectors (and
functions) are linearly dependent whenever

��Kx
D

�� > S. In all
subsequent derivations, we will assume this explicitly:��Kx

D

�� =
��Ia

2,D

�� =
1

2
D(D + 1) > S . (3.5)

Hence, by the definition of linear dependence there exist nonzero

and non-unique sets of coefficients
�
ϕi1i2

q

	(i1,i2)∈Ia
2,D indexed

by an integer-valued indexq such that:X
(i1,i2)∈Ia

2,D

ϕ
i1i2
q r̃

x
i1i2

= 0̃ ∀ q ∈ Q, (3.6)
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whereQ , {1, . . . , Q} andQ , |Q| is the maximum number
of linearly independent equations that will be determined soon.
Defining the matricesΦ andCx as follows:

Φ ,

264 ϕ̃1...
ϕ̃Q

375 =

264ϕ11
1 ϕ12

1 · · · ϕDD
1

...
...

. . .
...

ϕ11
Q ϕ12

Q · · · ϕDD
Q

375 (3.7)

and

C
x
,

26664 r̃x
11

r̃x
12

...
r̃x

DD

37775=

26664 r̃x
11[n1; m1] · · · r̃x

11[nN ; mN ]
r̃x
12[n1; m1] · · · r̃x

12[nN ; mN ]
...

. . .
...

r̃x
DD[n1; m1] · · · r̃x

DD[nN ; mN ]

37775, (3.8)

system (3.6) can now simply be written as:
Φ C

x = 0
N
Q , (3.9)

where0N
Q denotes the zero matrix withQ rows andN columns.

This shows that the rows ofΦ lie in the left null space ofCx,
which can easily be determined from the SVD ofCx by choos-
ing the left singular vectors that correspond to the smallest singu-
lar values. Sincerank(Cx)=dim

�
L (Kx

D)
�
=dx, the dimension

Q of the left null space equals
��Kx

D

��− dx = 1
2
D(D + 1) − dx.

Now we show how these observations can be used to derive
a system of multivariate homogeneous second degree polyno-
mial equations satisfied by each column of the mixing matrix
A =

�
a1 · · · aS

�
. Substituting (3.4) into (3.6) and usingAS2

it immediately follows that:X
(i1,i2)∈Ia

2,D

ϕ
i1i2
q a

j
i1

a
j
i2

= 0 ∀ q ∈ Q, ∀ 1 ≤ j ≤ S . (3.10)

This system of equations describes the relation between theun-
known coefficients of the matrixA and theknownset of co-
efficients inΦ. Letting z = [z1, . . . , zD]T and defining the
D-variate polynomial functions:

fq(z) ,
X

(i1,i2)∈Ia
2,D

ϕ
i1i2
q zi1zi2 ∀ q ∈ Q , (3.11)

system (3.10) can be written as:

fq(aj) = 0 ∀ q ∈ Q, ∀ 1 ≤ j ≤ S . (3.12)
Hence, all columnsaj of A satisfy the system{fq(z) = 0}q∈Q.
Consequently, if we can find the solutions of this system (which
is known because the coefficients inΦ are known), we can re-
coverA from the sensor correlation functions only.
Equation (3.11) reveals that all terms in each functionfq(z) have
degree two. This implies thatfq(z) is homogeneous of degree
two, also noted as2-homogeneous, meaning that:

fq(ηz) = (η)2fq(z) ∀ q ∈ Q, η ∈ R z ∈ RD.

From this property, it directly follows that:

fq(v) = 0 ∀ q ∈ Q =⇒ fq(ηv) = 0 ∀ q ∈ Q, η ∈ R .

Hence, ifv is a solution of the system{fq(z) = 0}q∈Q, then
alsoηv is a (an equivalent) solution for allη ∈ R. This is a
logical result of the so-calledscaling indeterminacyinherent to
MIBI [6]. Because of this, we are allowed to impose a norm con-
straint, say‖z‖ = 1 on the solutions of the system. Since the
set of values ofz for which f(z) = 0 defines the zero contour
level of a functionf(z), solving the system{fq(z) = 0}q∈Q

boils down to finding the intersections between the zero con-
tour levels of the functionsf1(z), . . . , fQ(z). The homogeneity
property of the polynomials in our system implies that thesezero
contour levels are cones in theD-dimensional Euclidian space.
Hence, geometrically, solving{fq(z) = 0}q∈Q means finding
the intersections betweenQ cones.

4. HOMOTOPY METHOD
Homotopy methods provide a deterministic means for solvinga
system of nonlinear equations by smoothly deforming the known
solutions of a simple start system into the desired solutions of the
target system [5]. They are based on the so-calledpath following
techniques. In this section, we give a brief overview of the basic
principles of homotopy methods. Excellent discussions canbe
found in several articles and books [4, 5]. The target system,
i.e. the system to be solved, is denoted byp(z) = 0, and the start
system byg(z) = 0. Homotopy methods operate in two stages.
Firstly, the (expected) number of solutions and the structure of
the target system are exploited to construct a start system.This
start system is embedded in the (convex)homotopydefined as:

h(z, λ) = γ(1−λ)g(z) + λp(z) ∀ λ ∈ [0, 1], (4.1)

whereλ ∈ R is the so-calledcontinuation parameterandγ is a
randomly chosen fixed constant [5]. Secondly, asλ is increased
from 0 to 1, numerical path following orcontinuationmethods,
trace the pathsz(λ) defined implicitly byh(z(λ), λ) = 0 from
the solutions of the start system to the solutions of the target sys-
tem. In theory, each path converges to a geometrically isolated
solution [5]. Because polynomial systems are very suited for
homotopy methods [4], we can use a very simple path following
method which proceeds as follows.
Suppose thatz(λ) is a solution ofh(z(λ), λ) = 0 for a certain
(known) value ofλ. Then, this solution is an approximate solu-
tion of the slightly deformed systemh(z(λ+∆λ), λ+∆λ) = 0,
where∆λ is a small increment. The refined solution of the
deformed system can be found by firstpredictingz(λ + ∆λ)
by means of e.g. an Euler step, and thencorrecting the predic-
tion by means of any local zero finding method, e.g. Newton’s
method [5]. Proceeding this way from the initially known so-
lutions atλ = 0 to the initially unknown solutions atλ = 1,
we finally end up at the solutions of the target system. This is
the basic rationale of homotopy methods. Although many much
more sophisticated and optimized methods exist, for our demon-
stration purposes the above described method suffices.
Now we will apply the ideas outlined above to the system of
polynomial equations derived in Section 3 for an example of a
specific MIBI problem withD = 3 andS = 4, the details of
which are presented in Section 5. For that example, it can be
shown (see Section 5) that the numberQ of independent equa-
tions is2. Let the equations of target systemp(z) in (4.1) be
given by p1(z1, z2, z3) , f1(z1, z2, z3) and p2(z1, z2, z3) ,

f2(z1, z2, z3) respectively.We choose the following start system:(
g1(z1, z2, z3) , (z1)

2 − (β1)
2(z3)

2 = 0

g2(z1, z2, z3) , (z2)
2 − (β2)

2(z3)
2 = 0

, (4.2)

whereβ1 andβ2 are randomly chosen fixed complex constants
[4,5]. This system has the following solutions forz:

z,

24z1

z2

z3

35 =

24β1

β2

z3

35 ,

24 β1

−β2

z3

35 ,

24−β1

β2

z3

35 , and

24−β1

−β2

z3

35 . (4.3)

As we have explained in Section 3, we may impose the norm
constraint‖z‖ = 1. In fact, this means including the equation
(z1)

2 + (z2)
2 + (z3)

2 = 1 to homotopy system (4.1). In total,
we obtain the following homotopy forλ ∈ [0, 1]:24h1(z1, z2, z3, λ)
h2(z1, z2, z3, λ)
h3(z1, z2, z3, λ)

35=

24γ(1 − λ)g1(z1, z2, z3) + λf1(z1, z2, z3)
γ(1 − λ)g2(z1, z2, z3) + λf2(z1, z2, z3)

(z1)
2 + (z2)

2 + (z3)
2 − 1

35 .

(4.4)
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Algorithm 1 MIBI based on SOS and homotopy (D=3, S =4).

1: Compute/estimate sensor correlation matrixCx in (3.8);

2: ComputeΦ in (3.7) from the SVD ofCx; now the system
{fq(z) = 0}q∈Q to be solved is known (see(3.11));

3: Define a fine gridG onλ∈ [0, 1], e.g.G,{0,∆λ, 2∆λ,..., 1};

4: For each solutionz(0) of the start system (see(4.3)), and
each subsequentλ ∈ G \ {0}, do:
• Use one step of Eulers method to predictz(λ) from

z(λ−∆λ) as follows:z := z + dz
dλ

· ∆λ;
• Use several steps of Newton’s method to correctz(λ),

i.e. find the solution ofh(z(λ), λ) = 0 by iterating:

z := z−
h
∇zh(z, λ)

i−1

h
�
z, λ

�
.

A possible homotopy algorithm for finding all unique solutions
of the systemf1(z) = f2(z) = 0 is given in Alg. 1. The gra-
dient dz

dλ
in step 4 can be found from the equation obtained by

taking the derivative ofh(z(λ), λ) = 0 w.r.t. λ. Furthermore,
∇zh(z, λ) denotes the Jacobian matrix ofh(z, λ) w.r.t.z.

5. EXAMPLE
In this section, we will apply the theory developed above to an
example of a MIBI scenario withD=3, S =4. Let A be given by:

A =

24 −0.6804 0.5774 −0.2673 0.5538
0.2722 0.5774 −0.8018 −0.8308
0.6804 0.5774 0.5345 −0.0554

35 .

We have used30000 samples of artificial source signals gener-
ated according to the following AR(2) model:

sj [n] = c
1
jsk[n − 1] + c

2
jsj [n − 2] + wj [n] , (5.1)

wherewk[n] is a stationary white Gaussian noise sequence, and
the pair of coefficients

�
c1
j , c

2
j

�
determines the pole positions of

the associated AR(2) all-pole filter. Thus, the source signals
possess an ‘AR(2) temporal structure’. In addition, the source
signals are also normalized to have unit variance. Since the
data is stationary, only the nonwhiteness can be exploited.We
choose the ROS (see Section 2) to be the set of lags
T , {1, . . . , 7} (due to stationarity, absolute times are irrele-
vant and omitted). In Fig. 2 the chosen pole pairs

�
c1
j , c

2
j

�
and

the corresponding source correlation vectors (functions)r̃s
jj on

the lag interval{−7, . . . , 0, . . . , 7} are depicted for1 ≤ j ≤ S.
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Figure 2: Source pole pairs and correlation functions.

The sensor signalsx[n] are obtained by mixing the source sig-
nals s[n] with A and adding noiseν [n] according to model
(2.1). The standard deviations of the noise-free parts of the
sensor signalsx1[n], x2[n], andx3[n] are given by1.09, 1.32
and1.04 respectively. The noise signalsν1[n], ν2[n], andν3[n]
are mutually statistically independent white Gaussian noise se-
quences with standard deviation0.5. From the sensor signals, we
estimate the sensor correlation functions{rx

i1i2
[m]}1≤i1 ,i2≤3

for all lags m ∈ T by averaging products of the form

xi1 [n]xi2 [n − m] over all30000 time samplesn. These func-
tions form the input for Alg. 1. In order to apply this algorithm,
we first have to determineQ, for which we need to know the di-
mensiondx of the linear space spanned by the sensor correlation
row vectors. This dimension depends on the mixing matrixA

and the dimensionds of the linear space spanned by the source
auto-correlation row vectors. In general, it can be shown that
dx = ds with probability one ifA is drawn from a continuous
probability distribution. In our current example,dx = ds = 4.
Hence, there areQ = 1

2
D(D + 1) − dx = 2 independent poly-

nomial equationsf1(z1, z2, z3) = 0 andf2(z1, z2, z3) = 0 in
the system to be solved. The coefficients of the two polyno-
mials are obtained from the two left singular vectors that cor-
respond to smallest singular values ofCx. More specifically,
suppose that the ‘ordered’ SVD ofCx is given in standard form
by Cx = UΣVT . Then, the row̃ϕ1 containing the coefficients
of f1(z1, z2, z3) is the transpose of the(dx + 1)-th (5-th) col-
umn ofU, and similarly the row̃ϕ2 containing the coefficients
of f2(z1, z2, z3) is the transpose of the

��Kx
D

��-th (6-th) column
of U. Now running Alg. 1 yields the following estimate ofA:

Â =

24 −0.6830 0.2648 0.5752 0.5502
0.2935 0.8077 0.5794 −0.8337
0.6688 −0.5268 0.5774 −0.0467

35 .

The reader can easily verify that, apart from the indeterminacies
mentioned in Section 2, this is close a estimate ofA.

6. CONCLUSIONS
We have presented a batch-mode MIBI method that is based on
SOS and a homotopy method. As an example, an algorithm spe-
cific for the scenario with 3 sensors and 4 sources was presented,
thereby demonstrating the ability to estimate more sourcesthan
sensors, and the applicability of homotopy methods. The method
can easily be generalized to higher order statistics. A topic for
future research is to make the algorithm adaptive.
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