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ABSTRACT

A filter structure is proposed which has a significantly lower

signal delay than common frequency-domain filtering by means

of an analysis-synthesis filter-bank (AS FB). The recently pub-

lished filter-bank equalizer (FBE) is a filter(-bank) with a lower

signal delay compared to the corresponding AS FB. In this con-

tribution, the signal delay of the FBE is further reduced by ap-

proximating the time-domain filter of the FBE by a filter of lower

degree. The proposed low delay filter (LDF) achieves a higher

amount of noise reduction than an AS FB or FBE with the same

signal delay.

1. INTRODUCTION

Noise reduction systems are today part of many real-time speech

processing and speech transmission systems, respectively, such

as mobile phones, hands-free telephony, tele-conferencing sys-

tems or hearing aids. For such systems, a low signal delay is an

important necessity for a convenient and pleasant speech com-

munication.

The enhancement of noisy speech is usually performed by

means of spectral-domain filtering, i.e., spectral weighting em-

ploying an analysis-synthesis filter-bank (AS FB). For this, the

DFT filter-bank (FB) is often used which can be efficiently im-

plemented as polyphase network (PPN) AS FB with the discrete

Fourier transform (DFT) calculated by the Fast Fourier Trans-

form (FFT), cf. [1]. This method causes a relative high signal

delay as an analysis FB and synthesis FB is needed. An ap-

proach to reduce the signal delay of a noise reduction based on

spectral weighting (spectral subtraction) is presented in [2].

A different approach to decrease the signal delay due to the

filtering is to employ the recently proposed filter-bank equalizer

(FBE) [3], [4]. This filter(-bank) has a lower signal delay than

the corresponding AS FB with the same number of frequency

bands and prototype filter length. The amount of noise reduction

achieved by the FBE and the corresponding AS FB is similar [5].

An approach to further reduce the signal delay of the FBE is

presented in this contribution. The new low delay filter (LDF)

is an extension of the uniform FBE, briefly explained in Sec. 2.

The concept of the LDF and different LDF types are introduced

in Sec. 3. The properties of the LDF and implementation aspects

are discussed in Sec. 4. The performance of the noise reduction

by using the LDF is investigated in Sec. 5. A summary is given

in Sec. 6.

This work was supported by Siemens Com, Munich, Germany.

2. UNIFORM FILTER-BANK EQUALIZER

The filter-bank equalizer (FBE) [3], [4] is an efficient realization

of a low delay filter-bank which has a significantly lower sig-

nal delay than the corresponding AS FB. The application of the

adaptive FBE for noise reduction with reduced signal delay has

been investigated in [5]. This filter structure is shown in Fig. 1

for the case of a uniform frequency resolution.
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Figure 1: Adaptive uniform GDFT filter-bank equalizer (FBE)

for noise reduction. (Vectors are marked by the underline and

the ’circle-dot’ denotes an element-wise vector multiplication.)

The M spectral coefficients X(k′) are calculated by a DFT

polyphase network (PPN) analysis FB. This allows the prototype

lowpass filter with impulse response h(n) to be longer than the

DFT size M . The variable r denotes the down-sampling rate,

where k = r k′. The calculation of the M spectral gain fac-

tors W (k′) can be done by a common spectral speech estimator,

e.g., [6]. The obtained gain factors with 0 ≤ Wi ≤ 1 are of

zero phase. The generalized discrete Fourier transform (GDFT)

of size M provides L+1 weighting factors wn(k′), due to its

periodicity, with non-zero phase. The filter coefficients of the

FBE are finally obtained by

hs(n, k′) = h(n)wn(k′) ; n = 0, 1, . . . L . (1)

An efficient implementation of the FBE for L > M is given by

the PPN FBE [4]. The FBE corresponds to a single time-domain

filter with impulse response hs(n, k′), which is obtained by the

coefficients h(n) of the prototype lowpass filter and weighting

factors wn(k′) adapted in the spectral-domain [4]. On one hand,

the FBE needs more multiplications than the corresponding AS

FB due to the time-domain filtering at sampling rate. On the
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other hand, the computation of the gain factors in the spectral-

domain is decoupled from the actual filtering in the time-domain.

Therefore, no aliasing effects occur and the rate for the com-

putation of the DFT and GDFT (by means of the FFT) is not

governed by restrictions for signal reconstruction as for an AS

FB. Moreover, the signal delay of the FBE is lower than for the

corresponding AS FB since no synthesis FB is needed.

3. LOW DELAY FILTER

3.1. Concept

The signal delay of the (adaptive) FBE shall be reduced. A

straight-forward solution is to take a FBE of lower filter degree

L. Another approach is to approximate the original time-domain

filter of the FBE by a filter of lower degree P < L. This new

concept will be termed as low delay filter (LDF), and its appli-

cation for noise reduction is shown in Fig. 2.
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Figure 2: Low delay filter (LDF) for adaptive noise reduction.

In contrast to the FBE of Fig. 1, an additional block ’filter

conversion’ is included which calculates the P +1 time-varying

coefficients a(k′) of the LDF from the L+1 filter coefficients

hs(n, k′) of the FBE. The obtained filter of degree P and with

impulse response ĥs(n, k′) can be an FIR filter or IIR filter. In

the following, two different filter approximations will be pro-

posed. For the sake of simplicity, the time-dependency of the

filter coefficients on k′ will be dropped in the sequel.

3.2. Moving-Average Low Delay Filter

The original filter of the FBE can be approximated by an FIR

filter of degree P < L following a technique very similar to

FIR filter design by windowing, e.g., [1]. The impulse response

hs(n) of Eq. (1) is truncated by a window sequence of length

P +1 according to

ĥs(n) = hMA(n) = hs(n)winP (n − nc) (2)

with

winP (n)

(

6= 0 ; 0 ≤ n ≤ P

= 0 ; else
. (3)

This approximation of the original filter of the FBE by a moving-

average (MA) filter results the MA LDF. To ease the treatment,

the term (MA) LDF shall refer to the overall system according

to Fig. 2, and the term (MA) filter includes only the actual filter

with impulse response ĥs(n). The truncation by a window re-

sults a smoothed frequency response of the original filter. The

truncation by a rectangular window yields the least-squares ap-

proximation error between the impulse response of the original

filter and that of the MA filter, e.g., [1]. A more flexible window

than the rectangular window is given, e.g., by

winP (n, β) =

(

β + (β − 1) cos
`

2 π
P

n
´

; 0 ≤ n ≤ P

0 ; else
(4)

with 0.5 ≤ β ≤ 1 .

The rectangular window (β =1), the Hanning window (β =0.5)

and the Hamming window (β = 0.54) are included as special

cases. A non rectangular window results an approximation error

which is not optimal in a least-squares sense.

3.3. Auto-Regressive Low Delay Filter

The original FIR filter with impulse response hs(n) can also be

approximated by an IIR filter. The spectral gain factors Wi for

noise reduction amplify (mostly) spectral components with high

speech energy (high SNR) and vice versa. Thus, these spectral

gain factors reflect roughly the (short-term) magnitude spectrum

of speech. This motivates the use of an auto-regressive (AR)

model, e.g. [7], for the filter approximation.

The system function of an AR filter (allpole filter) of degree

P is given by

Ĥs(z) = HAR(z) =
a0

1 −
P
P

n=1

an z−n

. (5)

Methods to determine the AR filter coefficients an can be taken

from parametric spectrum analysis, e.g., [1]. The coefficients of

the AR filter are determined by the Yule-Walker equations
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which yields the least-squares error between the original filter

and the AR filter approximation. The scaling factor a0 in Eq. (5)

is determined by

a0 =

v

u

u

tϕh̃h̃(0) −
P

X

n=1

an ϕh̃h̃(−n) (7)

and ensures that the AR filter and the original filter have both the

same amplification. The auto-correlation coefficients ϕh̃h̃ are

calculated here by the weighted auto-correlation method

ϕh̃h̃(λ) =

L−|λ|
X

n=0

h̃(n) h̃(n + λ) ; 0 ≤ |λ| ≤ P (8)

with h̃(n) = hs(n)winL(n, β) (9)

and window sequence given, e.g., by Eq. (4). A rectangular

window has been taken here to reduce the computational load

for evaluating Eq. (8). The auto-correlation method ensures a

symmetric Toeplitz structure for the auto-correlation matrix in
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Eq. (6) which allows to solve the Yule-Walker equations effi-

ciently by means of the Levinson-Durbin recursion, e.g., [1].

The obtained AR filter is always stable and of minimal phase

since the auto-correlation matrix is positive-definite. The use of

the covariance method instead of Eq. (8) to calculate the auto-

correlation coefficients for Eq. (6) has not been considered here

since the obtained AR filter is not necessarily stable.

A general IIR filter (ARMA filter) can also be employed for

the LDF. This approach, however, has not been regarded here

since the computation of the ARMA filter coefficients is much

more complex than for the AR filter (e.g. [1] ).

4. IMPLEMENTATION AND PROPERTIES

4.1. Algorithmic Complexity

The algorithmic complexity - in terms of computational com-

plexity and memory consumption - for the presented LDFs is

listed in Table 1. The complexity for the gain calculation and

calculation of hs(n, k′)
and MA / AR filtering

multiplications 1

r
(2M log

2
M + 2L+2)+P +1

additions 1

r
(3M log

2
M+L+1−M)+P

memory L+2M+P

filter conversion for MA LDF

multiplications P +1

additions 0

memory 0

filter conversion for AR LDF

multiplications 1

r
((P +1)(L+4) + P (Mdiv + Msqrt))

additions 1

r
((P +1)(L+2) + P (Adiv + Asqrt))

memory 3P

Table 1: Algorithmic complexity in terms of required average

number of real multiplications and real additions per sample as

well as number of delay elements (memory) for a MA LDF and

AR LDF of filter degree P .

SNR estimation in Fig. 2 is independent of the filter type and

has not been considered in Table 1. The DFT and GDFT can

be calculated by means of the FFT, cf. [1], [5]. The algorithmic

complexity for the calculation of the filter coefficients hs(n, k′)
and the actual time-domain filtering is equal for both LDFs.

The variable Mdiv marks the number of multiplications

needed for a division operation, and Msqrt represents the num-

ber of multiplications needed for a square-root operation, whose

values dependent on the numeric procedure and accuracy used

to perform these operations. Accordingly, the variables Adiv and

Asqrt denote the additions needed for a division and square-root

operation, respectively. Most of the computational complexity

for the AR filter conversion is required to compute the P +1
auto-correlation coefficients according to Eq. (8), which is of or-

der PL. A lower computational complexity can be achieved by

calculating Eq. (8) by means of the fast convolution or the Rader

algorithm [8] with savings dependent on P and L. The MA filter

conversion needs no multiplications if a rectangular window is

used for Eq. (2).

It should be noted that the AR filter degree can be chosen

significantly lower than the MA filter degree for a similar amount

of noise reduction as shown later in Sec. 5.

The implementation of the MA / AR filter can be based on

different filter structures, e.g., [1]. The choice of the filter struc-

ture is important for filters with time-varying coefficients as well

as for real filter implementations with finite precision arithmetic.

Here, the implementation of the MA / AR filter by the transposed

direct form II1 has been found suitable to avoid filter-ringing.

This effect can occur for time-varying filter coefficients and be-

comes audible by disturbing artifacts. For the direct form, the

delay chain in Fig. 2 can be shared by the MA filter such that the

MA filter needs not the P delay elements considered in Table 1.

The FBE can be regarded as MA LDF with P = L. Therefore,

the MA filter for P > M can be implemented by a PPN realiza-

tion similar to the PPN FBE [4]. However, this implementation

has not been considered in Table 1 for the sake of simplicity.

4.2. Signal Delay

The signal delay of a filter can be determined for sample-wise

processing, e.g., by the average group-delay. A second method

used here is to determine the signal delay d0 according to

d0 = arg max
λ∈Z

{ϕxy(λ)} (10)

with ϕxy(λ) denoting the cross-correlation sequence between

the input sequence x(k) and the output sequence y(k) of the

filter. Thereby, the signal delay calculated by this two methods

might differ for filters with non-linear phase response.

The signal delay of a MA filter with linear phase and degree

P amounts to P/2 samples. In contrast, the AR filter regarded

in Sec. 5 has a maximal signal delay of only two samples.

5. SIMULATION RESULTS

The described MA LDF and AR LDF have been employed for

noise reduction according to Fig. 2 and compared with the FBE

of Fig. 1. The noise reduction system is operated at a sampling

frequency of 16 kHz. The spectral gain factors are adapted after

r=128 samples. The soft-gain MMSE spectral estimator [6] has

been used, with an SNR estimation based on minimum statistics

[9], to calculate the gain factors. Leopard tank noise from the

noisex-92 database has been added to a male speech sequence.

The amplification of the noise has been varied to achieve differ-

ent signal-to-noise ratios (SNRs) for the noisy input speech.

The simulation facilitates to filter the noise and speech se-

quence separately with filter coefficients adapted for the noisy

speech. This allows to calculate the noise attenuation (NA), the

speech attenuation (SA), and the cepstral distance (CD) [10].

The SA is the average ratio between the powers of clean speech

and processed speech; the NA is the average ratio between the

powers of added noise and processed noise. The trade-off be-

tween noise attenuation and speech attenuation can be captured

by the effective noise attenuation (ENA) which is defined by

ENA=NA−SA, where the NA and the SA are expressed by their

logarithm. The CD is a frequency-domain distant measure to ac-

count for speech distortions. Here, the first 40 cepstral coeffi-

cients have been used for the evaluation of the CD. The evalua-

tion of these instrumental measures requires the signal delay d0.

1The nomenclature for different filter structures is inconsistent in lit-
erature and those of [1] has been used here.
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This has been determined by Eq. (10) using the clean and pro-

cessed speech due to their stronger correlation. The simulation

results are shown in Fig. 3. The highest amount of noise reduc-

FBE : M =L=64
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Figure 3: ENA and CD for different SNRs achieved by means of

the LDF and the FBE for tank noise. (The curves for white noise

are similar but exhibit a higher ENA.)

tion - in terms of a low CD and high ENA - is achieved by means

of a FBE of degree L = 256 and M = 256 frequency channels.

The approximation of this FBE by a MA LDF or AR LDF, re-

spectively, leads to a slightly decreased noise reduction but sig-

nificant lower signal delay: The original (linear phase) FBE with

L=M =256 causes a signal delay of 128 samples, whereas the

(linear phase) MA filter has a delay of 32 samples, and the AR

filter has a signal delay of only up to 2 samples dependent on

the input SNR. Moreover, the MA LDF has a lower algorithmic

complexity than the FBE due to its lower filter degree.

The (linear phase) FBE with L=M =64 has a signal delay

of 32 samples which is equal to that of the MA filter. However,

the amount of noise reduction achieved by this FBE is lower than

for the MA / AR filter. This shows that the LDF approach, which

calculates the spectral gain factors with a higher frequency res-

olution and approximates the resulting time-domain filter by a

filter of lower degree, achieves a higher amount of noise reduc-

tion than the use of a FBE with a lower degree (lower frequency

resolution) to obtain the same signal delay. Moreover, in some

cases it might be necessary to adjust the parameters for the gain

calculation if the number of frequency channels is altered. This

parameter adjustment is not required if the signal delay is re-

duced by the LDF approach. The higher FFT size M of the

regarded MA LDF compared to the FBE with M = 64 leads

to a moderate increase for the computational complexity as the

calculation of wn(k′) is done at a decimated sampling rate.

The LDF has been compared with the FBE here. However,

it has been shown in [5] that the commonly used AS FB and

the FBE achieve approximately the same noise reduction for

the same number of frequency channels M and the same pro-

totype filter length L. The comparison between AS FB and LDF

yields similar results for the measured amount of noise reduc-

tion, but the the signal delay of the AS FB is much greater than

for the corresponding FBE. Thus, the LDF achieves a relative

high amount of noise reduction despite a low signal delay. The

incorporation of other transforms than the GDFT is easily possi-

ble by regarding the generalized FBE [4] as basis for the LDF.

6. CONCLUSIONS

A novel low delay filter (LDF) has been presented which is espe-

cially useful for noise reduction systems requiring a low signal

delay. The MA LDF is based on an FIR filter and well suited

if the algorithmic complexity should be kept low. The AR LDF

is based on an IIR filter of minimal phase and achieves a very

low signal delay, but requires more computations for the evalu-

ation of its coefficients than the MA LDF. Thus, the presented

LDF approach allows to adjust the trade-off of a noise reduction

between signal delay, computational complexity and achieved

amount of noise reduction in a flexible manner by means of the

filter degree and filter type. The LDF achieves a higher amount

of noise reduction than a FBE or AS FB with the same signal

delay. The use of the LDF for other applications than noise re-

duction is easily possible and remains as outlook.
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