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ABSTRACT

The objective of this paper is to investigate the usability
of channel shortening approaches known from data trans-
mission for the equalization of acoustic systems. In setups
for data transmission, the equalizing filter usually succeeds
the channel, whereas in systems for the compensation of
room acoustics it is placed in the signal path in front of the
loudspeaker, which then acts as an acoustic source in the
room. In both data transmission and room equalization, the
channel impulse response is usually assumed to be known.
In this paper we investigate both setups under the more
realistic assumption of imperfect channel knowledge, and we
show under which conditions the designs are equivalent. In
particular, taking imperfect channel knowledge into account
leads to robust designs that allow for more coarse, but faster
channel estimation techniques.

1. INTRODUCTION

Approaches for listening room compensation (LRC) are
based on a setup with an equalization filter in front of the
loudspeaker [1]. The filter is designed with respect to one or
more microphone positions in the room. In the present work,
only a single microphone is considered. The room impulse
response (RIR) is denoted byc(n), and itsz-transform is
given byC(z). In general,C(z) is a mixed-phase system,
having zeros inside and outside the unit circle. Therefore,
only its minimum-phase component can be inverted by a
standard causal IIR filter [2]. More recent proposals [3] stress
the importance of equalizing the remaining allpass compo-
nent, too. Alternative approaches are based on minimizing
the mean squared error (MSE) between the output of a ref-
erence system with impulse responsed̃(n) = d(n−n0) and
the concatenation of the equalization filter, denoted ash(n),
and the RIRc(n) [4, 5]. The parametern0 is an explicitly
introduced system delay. The choice of the reference system
is quite arbitrary, and in all known approaches for acoustical
applications, a delayed discrete pulse or a bandpass filtered
version of such a pulse is used as the desired target system.

Aiming at perfect equalization is quite intuitive and
straightforward, but the concept can cause practical prob-
lems when the channelC(z) has zeros close to, or even on
the unit circle. For such channels, in data transmission, the
method of channel shortening has been developed [6, 7]. It
has originally been proposed to reduce the implementation
cost of maximum likelihood detection via the Viterbi algo-
rithm [6], and it is now also widely used in orthogonal fre-
quency division multiplex (OFDM) and discrete multitone
(DMT) systems to reduce the effective channel order to the
length of the guard interval [7]. In this paper, we investigate
the channel shortening concept for the use in listening room
compensation. Thus, we look at the joint optimization of
the FIR prefilterh(n) and the FIR target systemd(n) with
impulse response lengthLd. The optimization ofn0 is a
separate problem which is not considered here. In addition to
the arguments used in data transmission, this approach is also
motivated by the fact that a comparable relaxed requirement
can be found in psychoacoustics: here one uses, for example,
the D50-measure, which is defined as the ratio of the energy
within 50 ms after the first peak of a RIR versus the complete
impulse response’s energy [8]. For this measure, which is
related to the speech intelligibility within a room, the actual
form of the impulse responsed(n) is not too relevant. Only
the energy distribution is of interest. Thus, by choosing a
target system with an optimized impulse response of 50 ms
duration, we can directly maximize the D50-measure.

Known approaches for channel shortening assume per-
fect channel knowledge. However, in real-world applica-
tions where the channel has to be estimated first, this perfect
knowledge is not always available. To address this problem,
in our approach, we consider some measurement noise on
the channel estimate. That is, the channelc(n) is replaced
by a model̃c(n) = c(n) + p(n) where the sequencep(n) is
a random perturbation that is statistically independent ofthe
input signal and other possible noise components. Figs. 1
and 2 show the two setups considered in this paper, including
the random channel perturbation. In the configuration in
Fig. 2 for data transmission, an additive channel noiseη(n)
is present. The LRC system includes no additive noise, but
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Fig. 1. Single-channel setup for room equalization.p(n)
is a random perturbation of the assumed channel impulse
responsec(n).

the hypothetical noise amplification of the prefilterh(n) is
still of interest and can be considered in the design.

In the next section we will analyze the setups in Figs. 1
and 2 and show under which conditions the respective opti-
mal solutions are equivalent. In Section 3, we then carry out
the joint optimization of the prefilter and the target system
while considering imperfect channel knowledge. Our im-
pulse response shortening approach is based on the method
by Kammeyer [9]. Simulation results are given in Section
4, and Section 5 concludes the paper.

Notation. Vectors and matrices are printed in boldface.
The superscriptsT , ∗, andH denote transposition, complex
conjugation, and Hermitian transposition, respectively.ℜ{·}
returns the real part of a complex value, andδik is the
Kronecker symbol. The asterisk∗ denotes convolution.

2. ANALOGIES OF EQUALIZER SETUPS IN DATA
TRANSMISSION AND ACOUSTICAL SYSTEMS

We first consider the system in Fig. 1 and define the vectors

xc =
[
x(n), x(n − 1), . . . , x(n − Lc − Lh + 2)

]T

xp =
[
x(n), x(n − 1), . . . , x(n − Lp − Lh + 2)

]T

xd =
[
x(n − n0), . . . , x(n − n0 − Ld + 1)

]T

h =
[
h(0), h(1), . . . , h(Lh − 1)

]T

c =
[
c(0), c(1), . . . , c(Lc − 1)

]T

p =
[
p(0), p(1), . . . , p(Lp − 1)

]T

d =
[
d(0), d(1), . . . , d(Ld − 1)

]T
.

(1)
Note that for the signal vectors, the discrete time indexn

has been omitted. The termsLh, Lc, Lp, andLd denote
the lengths ofh(n), c(n), p(n), andd(n), respectively. We
assume thatLc ≤ Lp, which means that the random channel
perturbationp(n) can be longer than the assumed impulse
responsec(n).

x(n)

η(n)

u(n)

y(n)

e(n)

h(n)

c(n)

p(n)

z−n0 d(n)

Fig. 2. Setup for memory truncation in data transmission.

The error signale(n) can be described as

e(n) = xT
c Ch + xT

p Ph − xT
d d (2)

whereC andP are convolution matrices of size(Lc +Lh −
1) × Lh and(Lp + Lh − 1) × Lh, respectively.

In addition, we define the vector

v =
[
v(n), v(n − 1), . . . , v(n − Lh + 1)

]T
(3)

wherev(n) is a hypothetical noise process that would result
in the filtered noiseε(n) = vT h when fed into the prefilter
h(n). The power ofε(n) then gives us an indication of the
noise amplification of the systemh(n). We assume that the
three random processesx(n), p(n), andv(n) are mutually
uncorrelated and that at leastp(n) andv(n) have zero mean
and thatx(n) andv(n) are wide-sense stationary.

An objective function is now defined as the weighted sum
of the powers of the output errore(n) and the hypothetical
noise processε(n):

Q1 = E
{
|e(n)|2

}
+ βE

{
|ε(n)|2

}
, β > 0. (4)

We have

Q1 = hHCHE
{
x∗

cx
T
c

}
Ch − 2ℜ{hHCHE

{
x∗

cx
T
d

}
d}

+hHE
{
PHx∗

px
T
p P

}
h + dHE

{
x∗

dx
T
d

}
d

+βhHE
{
v∗vT

}
h + 2ℜ{hHCH E

{
x∗

cx
T
p P

}

︸ ︷︷ ︸

=0

h}
−2ℜ{hH E

{
PHx∗

px
T
d

}

︸ ︷︷ ︸

=0

d}.

(5)
Next, we will investigate the setup in Fig. 2 with the filter

h succeeding the channel. Here, the error signal results in

e(n) = xT
c Ch + xT

p Ph − xT
d d + η

T h (6)

with η =
[
η(n), η(n − 1), . . . , η(n − Lh + 1)

]T
, where

η(n) is zero-mean channel noise that is uncorrelated tox(n)
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andp(n). An objective function is defined as

Q2 = E
{
|e(n)|2

}
= hHCHE

{
x∗

cx
T
c

}
Ch

−2ℜ{hHCHE
{
x∗

cx
T
d

}
d} + hHE

{
PHx∗

px
T
p P

}
h

+dHE
{
x∗

dx
T
d

}
d + hHE

{
η
∗

η
T
}
h (7)

+2ℜ{hHCH E
{
x∗

cx
T
p P

}

︸ ︷︷ ︸

=0

h} − 2ℜ{hHE
{
PHx∗

px
T
d

}

︸ ︷︷ ︸

=0

d}.

By comparing (5) and (7) we see that forη(n) =
√

βv(n)
both objective functions are the same. Therefore, the solu-
tions derived in the next section are valid for both setups.

3. IMPULSE RESPONSE SHORTENING WITH
STOCHASTIC CHANNEL ESTIMATION ERROR

We follow the notation forQ1. By setting the derivative of
Q1 with respect toh equal to zero and solving the resulting
linear system, we obtain

h =
(
CHRxcxc

C (8)

+E
{
PHx∗

px
T
p P

}
+ βRvv

)
−1

CHRxcxd
d.

The autocorrelation matricesRxcxc
, Rvv, andRxcxd

in
(8) are defined according to their indices and the associated
signals in the expectation operators in equation (5).

The expressionE
{
PHx∗

px
T
p P

}
is the autocorrelation

matrix of the processu(n) =
∑Lp−1

i=0 p(i)x(n − i) that re-
sults from the convolution of the random inputx(n) with the
random perturbationp(n). For its autocorrelation sequence
we obtain

E{u∗(n)u(n + κ)} =

E

{
∑Lp−1

i=0
p∗(i)x∗(n−i)

∑Lp−1

j=0
p(j)x(n+κ−j)

}

(9)

=
∑Lp−1

i=−(Lp−1)
rxx(κ − i)ρpp(i)

with
rxx(κ) = E{x∗(n)x(n + κ)}

ρpp(i) =
∑Lp−1

n=0
rpp(n, i)

rpp(n, i) = E{p∗(n)p(n + i)} .

The correlation matrix is given by

Ruu = E
{
u∗uT

}
= E

{
PHx∗

px
T
p P

}
(10)

with u =
[
u(n), u(n − 1), . . . , u(n − Lh + 1)

]T
.

Finally, the equalizer’s coefficient vector becomes

h =
(
CT Rxcxc

C + Ruu + βRvv

)

︸ ︷︷ ︸

= A

−1
CT Rxcxd

d. (11)

From (11) we see the following. If the stochastic
estimation errorp(n) is temporally not correlated, i.e.
rpp(n, i) = σ2

pδni, and if x(n) and v(n) have the same
statistical properties, then the perturbationp(n) and the
hypothetical noisev(n) have the same quality apart from
the scalar factorβ.

Equation (11) gives us the optimal prefilterh(n) for
a given target systemd(n). Instead of choosing the target
system in an ad hoc manner, we will now consider the choice
of the optimal length-Ld target systemd(n) for a given
channelc(n). For this, we follow the method in [9], which,
unlike the ones in [6, 7], avoids solving large eigenvalue
problems and results in a linear system of equations.

We first formulate the homogeneous linear system:

[
Rxdxd

−RH
xcxd

C

−CT Rxcxd
A

] [
d

h

]

=

[
0

0

]

. (12)

The upper part expresses the fact that the firstLd coefficients
of the impulse responsec(n) ∗ hopt(n) should be equal to
d(n). The lower part equals (11). By settingd(ℓ) = 1 in the
vectord in (12) for some value ofℓ with 0 ≤ ℓ ≤ Ld − 1
and removing theℓth row of the resulting linear system, we
obtain an inhomogeneous system that can be easily solved
for the remaining coefficients ofd(n) and the filterh(n).
Altogether, the method yields the optimal filtersdopt and
hopt under the condition thatd(ℓ) = 1.

4. SIMULATION RESULTS

A room impulse response (RIR) with a reverberation time
of τ60 = 100 ms, sampled at a frequency of 8kHz, was
generated with the well-known image method [10]. The
length of the RIR and its perturbation was set to 800 taps,
the equalizer’s length accounted to 512 taps, and the target
system consisted of 20 coefficients. The delay in front of the
target system was set ton0 = 50.

Fig. 3 depicts the original and the shortened impulse
response. We see that the method is quite successful in
reducing the effective impulse response length. Clearly, a
better reduction of the tail ofc(n)∗hopt(n) can be achieved
with a longer prefilter, but even with prefilters of much
shorter length, a significant reduction of the effective impulse
response length can be achieved.

A measure of interest is the early-to-late ratio (ETLR)

ETLR =

∑Ld+kd−1
n=0 E

{
|g(n)|2

}

∑Lp+Lh−1
n=Ld+kd

E{|g(n)|2}
, (13)

with g(n) being the random overall response given by

g(n) =
∑

i
hopt(i)c(n− i) +

∑

i
hopt(i)p(n− i). (14)

 199



0 100 200 300 400 500 600 700 800 900 1000
−0.5

0

0.5

1

0 100 200 300 400 500 600 700 800 900 1000
−0.5

0

0.5

1

c(
n
)

c(
n
)
∗h

o
p
t
(n

)

discrete time indexn

(a)

(b)

Fig. 3. Impulse responses. (a) Original. (b) Shortened.

In our experiments, the perturbation process was defined as
p(n) = αp0(n), wherep0(n) is a white random process with
∑Lp−1

n=0 E
{
|p0(n)|2

}
=

∑Lc−1
n=0 |c(n)|2, andα is used to

adjust the average power ofp(n). We employed two different
scaling factors,αd andαe, for the design and evaluation,
respectively. Fig. 4 shows the ETLR measure for different
choices ofαd andαe. As expected, we see that it is optimal
to haveαd = αe, but even forαd = 0 and high perturbation,
the results do not differ from the constrained design too
heavily.

However, we can observe a distinct advantage of the
chosen shortening approach by Kammeyer compared to a
conventional least-squares equalizer

h = A−1CT Rxcxd
d (15)

with a discrete pulse as a target systemd.
For very low perturbation, the ETLR measure saturates

because of the finite prefilter length. Improvements are
possible by increasingLh.

5. CONCLUSIONS

In this paper, we have shown a method for the joint opti-
mization of the prefilter and the target system for acoustic
listening room compensation. To increase the robustness of
the design, we introduced a possible perturbation of the pre-
viously measured room impulse response. It could be shown
that assuming such a perturbation allows us to obtain better
early-to-late ratios in scenarios where there is a mismatch
between the measured and the true room impulse response.
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