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ABSTRACT

In this paper, we propose a novel set-theoretic stereophonic echo
canceling algorithm that realizes fast convergence by utilizing mul-
tiple constraints based on a priori room-acoustics information. It
is reported that the squared impulse response in a typical room de-
cays exponentially on average. Based on this a priori information,
we present two simple examples of constraint sets bounding the
adaptive filter coefficients. In addition to the constraint sets, we
newly introduce different sets, based on the same a priori informa-
tion, to raise speed of initial convergence. The numerical examples
demonstrate that the proposed algorithm reduces the time, to drop
by 20dB in system mismatch, by 19[sec.] (11[sec.]) compared
with the NLMS (the APA). Also in ERLE, the proposed algorithm
dramatically outperforms the conventional algorithms.

1. INTRODUCTION

Constrained adaptive filteringwith a priori information has been
proven to be effective in signal processing applications such as
adaptive beamforming [1, Chapter6]. On the other hand, in the
study ofroom acoustics, it is shown that squared impulse response
in a typical room decays exponentially on average under some con-
ditions [2], which has been widely used in acoustics; e.g., sound
impulse response extension for simulating auditory impression of
a virtual environment [3], reverberation time estimation for speech
recognition [4], etc. This a priori information is naturally expected
to be utilized for stereophonic acoustic echo cancellation (SAEC)
problem. This paper presents a set-theoretic SAEC algorithm that
efficiently incorporates this information, for raising the conver-
gence speed of adaptive filter, into multiple constraints.

For realistic and high quality acoustic telecommunication, a
stereophonic (generally multi-channel) hands-free and full-duplex
system is a key technology; see e.g., [1, Chapter4]. One of the
most important and challenging issues is to suppress (or cancel if
possible) “acoustic echo” from 2 loudspeakers to 2 microphones,
and thus stereo echo cancelers must be installed. Motivated by the
finding of an intrinsic problem so-callednon-uniqueness problem
[5], a great deal of effort has been devoted to resolve this prob-
lem; e.g., [5, 6]. Simply saying, a system of linear equations, to
be solved for minimizing the residual echo within a time interval
in which the transmission paths are almost constant, has infinitely
many solutions depending on the transmission paths. To prevent
echo relapses when the transmission paths change, it is strongly
desired to estimate the true echo impulse response as “fast” and
“accurately” as possible. The major interest in SAEC is to develop
an efficient adaptive algorithm to realize the “fast” and “accurate”
estimation withO(N) complexity [7] (Note that demand for low
complexity is also severe since the filter lengthN should typically
be a few thousand for sufficient echo cancellation).

An efficient SAEC algorithm ofO(N) complexity is proposed
[8], which is based on simultaneous use of multiple state input-
output data by utilizing the adaptive Parallel Subgradient Projec-
tion (adaptive PSP) techniques [9]. The algorithm is derived from
the Adaptive Projected Subgradient Method (APSM) [10], which

generates a strongly convergent point sequence that asymptotically
minimizes a certain sequence of nonnegative continuous convex
functions over a convex constraint set; in SAEC, e.g., the sequence
of functions is defined as the distance to the set of filters that tem-
porarily minimize the error at each time. Recently, in [11], the
original APSM [10] was extended from a single convex projector
to anη-attracting nonexpansive mapping, to which a concatenation
of convex projectors belongs (see Sec. 2-B). Thus, this extension
provides great benefit, i.e., the use of “multiple constraints”.

In this paper, we propose a powerful set-theoretic SAEC algo-
rithm based on the APSM with multiple constraints. Based on the
aforementioned a priori information, we present two examples of
constraint sets that bound the adaptive filter coefficients (Sec. 3-A).
In addition to the constraint sets, we newly introduce, also based
on the same a priori information, different sets along which the
adaptive filter quickly approaches the true impulse response espe-
cially in the initial phase (see Sec. 3-B). Thanks to the simple struc-
ture of those sets, the proposed algorithm causes no serious in-
crease in computational complexity compared with the method in
[8] (see Remark 1 in Sec. 3-B). The simulation results demonstrate
that the proposed algorithm dramatically outperforms the method
in [8] as well as the Normalized Least Mean Square (NLMS) al-
gorithm and the Affine Projection Algorithm (APA) [12] both in
system mismatch and in Echo Return Loss Enhancement (ERLE).

2. PRELIMINARIES

Following the problem formulation for SAEC, the APSM with
multiple convex constraints [11] is briefly introduced.

A. Stereo echo canceling problem

Without loss of generality, we concentrate on the microphone B1
in the receiving room (Room B); see Fig. 1. The signals are mod-
eled as follows (k ∈ N: time index, superscriptT : transposition):
• talker’s voice signal:sk ∈ R

L (L ∈ N
∗ := N \ {0})

• i-th transmission path:„(i) ∈ R
L (i = 1, 2)

• signal at mic. (microphone) Ai: u
(i)
k := sT

k „(i) ∈ R (i = 1, 2)
• vector ofu(i)

k : u
(i)
k := [u

(i)
k , · · · , u

(i)
k−N+1]

T ∈ R
N (N ∈ N

∗)
• signal after Unit 1:eu(1)

k ∈ R
N

• input vector to Room B:uk :=

»
eu(1)

k

u
(2)
k

–
∈ H := R

2N

• input matrix:Uk := [uk, · · · , uk−r+1] ∈ R
2N×r (r ∈ N

∗)
• i-th echo path:h∗

(i) ∈ R
N (i = 1, 2)

• estimandum (system to be estimated):h∗ :=[h∗
(1)

T , h∗
(2)

T ]T ∈H

• adaptive filter (echo canceler):hk := [h
(1)
k

T
, h

(2)
k

T
]T ∈ H

• additive noise at mic. B1:nk := [nk, · · · , nk−r+1]
T ∈ R

r

• output (observed signal at mic. B1):dk := UT
k h∗ + nk ∈ R

r

• residual error function:ek(h) := UT
k h − dk ∈ R

r

Here,H(:= R
2N ) is a real Hilbert space equipped with the in-

ner product〈x, y〉 := xT y, ∀x, y ∈ H, and its induced norm
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Fig. 1. Stereophonic acoustic echo cancelers. Unit 1 is a preprocessing

module that gives a delay tou(1)
k with the cycle periodQ ∈ N∗.

‖x‖ :=
`
xT x

´1/2
, ∀x ∈ H. The common notation “0” is used

to denote both “zero vector” and “zero matrix”.
The goal of the SAEC problem is to constantly cancel the

echo; i.e.,〈uk, h∗〉 ≈ 〈uk, hk〉, ∀k ∈ N. Since only(uk, dk)k∈N

are observable, a common alternative goal is to suppress the resid-
ual error; i.e.,ek(hk) ≈ 0, ∀k ∈ N. Due to high correlation be-
tween two signalsu(1)

k andu
(2)
k , this problem has infinitely many

solutions depending on„(1) and„(2), which is the so-called non-
uniqueness problem [5–7]. Without well-approximatingh∗, echo
relapses by change of the transmission paths„(1) and„(2). Hence,
it is strongly desired to keephk close toh∗.

B. Adaptive projected subgradient method with multiple con-
vex constraints

For any nonempty closed convex1 setC ⊂ H, theprojection op-
erator PC : H → C maps a vectorx ∈ H to the unique vector
PC(x) ∈ C s.t. d(x, C) := ‖x − PC(x)‖ = miny∈C ‖x − y‖.
Let K1, K2, · · · , Km ⊂ H be m closed convex sets s.t.K :=Tm

j=1 Kj 6= ∅. Also let Θk : H → [0,∞), k ∈ N, be a contin-

uousconvex2 function and∂Θ(y) the subdifferential3 of Θ at y.
The following scheme, an extension of the scheme in [10, Theo-
rem 2], provides a vector sequence that minimizes asymptotically
the sequence of functions(Θk)k∈N overK (see the appendix).

Scheme 1 (Adaptive Projected Subgradient Method with Multiple
Convex Constraints[11]) For an arbitrary h0 ∈ H, generate a
sequence(hk)k∈N ⊂ H by

hk+1 :=

8
>><
>>:

PKm · · ·PK2PK1

„
hk − λk

Θk(hk)

‖Θ
′

k
(hk)‖2

Θ
′

k(hk)

«
,

if Θ
′

k(hk) 6= 0,
PKm · · ·PK2PK1 (hk) , otherwise,

whereΘ
′

k(hk) ∈ ∂Θk(hk) andλk ∈ [0, 2], ∀k ∈ N.

In [11, Theorem 1], Scheme 1 is presented for a more general map-
ping called “η-attracting nonexpansive” instead of the concatena-
tion of projectorsPKm · · ·PK2PK1 (The mappingPKm · · ·PK2

PK1 is 1
m

-attracting nonexpansive [11, Lemma 2]).

3. STEREO ECHO CANCELER BASED ON APSM WITH
MULTIPLE ENERGY CONSTRAINTS

In this section, we present a new set-theoretic stereo echo cancel-
ing algorithm based on the APSM with multiple convex constraints
(Scheme 1). Note that the convex constraint sets,K1, · · · , Km,

1A setC ⊂ H is said to beconvexprovided that∀x, y ∈ C, ∀ν ∈
(0, 1), νx + (1 − ν)y ∈ C.

2A functionΘ : H → R is said to beconvexif Θ(νx + (1 − ν)y) ≤
νΘ(x) + (1 − ν)Θ(y), ∀x, y ∈ H and∀ν ∈ (0, 1).

3Thesubdifferentialof Θ at y is the set of all thesubgradientsof Θ at
y; ∂Θ(y) := {a ∈ H : 〈x − y, a〉 + Θ(y) ≤ Θ(x),∀x ∈ H}.

must be designed simply enough to compute the associated metric
projections in real time, although the sets can be designed based
on large variety of a priori information about echo paths. Simple
examples of constraint sets are given in Sec. 3.A, and the proposed
algorithm is then presented in Sec. 3.B.

A. Design of Constraint Sets and Stochastic Property Sets

Let us consider first themonauralcase for simplicity. It is known
that, under the diffuse sound field assumption, the ensemble aver-
ageEn of the squared room impulse responses decays exponen-
tially (see [4]); i.e.,

En := E{h2
(n)} = E1e

−δn, ∀n ∈ {1, 2, · · · , N}, (1)

whereE{·} denotes expectation,{h(n)}
N
n=1 is a causal room im-

pulse response, andδ := log 106

T60Fs
; Fs: the sampling frequency,

T60: the time interval in which the reverberant sound energy drops
down by 60 dB [2]. For the estimation ofT60, a blind algorithm,
which does not require the identification of room impulse response
unlike the classical techniques, is proposed [4]. (1) implies thatPN/2

n=1 h2
(n) is expected to be much greater than

PN
n=N/2+1 h2

(n).
Now, return to thestereophoniccase. Recall that the estiman-

dum ish∗ := [h∗
(1)

T , h∗
(2)

T ]T ∈ H(:= R
2N ). From the above dis-

cussion, it is highly expected
‚‚h∗

(i),e

‚‚2
≫

‚‚h∗
(i),l

‚‚2
(∀i = 1, 2),

whereh∗
(i),e, h∗

(i),l ∈ R
N/2 satisfy h∗

(i) = [h∗
(i),e

T , h∗
(i),l

T ]T .
Based on this observation, we propose the following constraint set.

Example 1 (Energy Constraint Sets)

B(i) :=
n

h ∈ H : h
T

Dih ≤ εi

o
, ∀i = 1, 2, 3, 4, (2)

where,∀i = 1, 2, 3, 4, εi ≥ 0 is the energy bound and

Di :=

2
4

0N(i−1)
2

0 0

0 I N
2

0

0 0 0N(4−i)
2

3
5 ∈ R

2N×2N .

Here,0a andIa (a ∈ N) denotea × a zero and identity matrices,
respectively (0 denotes a zero matrix of an appropriate size).

To ensure the membershiph∗ ∈ B(i), ε1 andε3 should be
much greater thanε2 andε4. The developments inroom acoustics
provide a priori knowledge about statistics of the impulse response
h∗ to determineεi [2]. The definition ofDi is just for simplic-
ity, and it can be devised; e.g., change the size ofI, or make the
diagonal elements ofI decay exponentially etc.

Example 2 B := {h ∈ H : |hn| ≤ ̟n, ∀n = 1, 2, · · · , 2N}
with the upper bound(̟n)2N

n=1. In this case, the original APSM
[10] can be used instead of Scheme 1.

Next is the definition ofstochastic property sets. Because of
corrupted noise, the linear varietyVk := {h ∈ H : ‖ek(h)‖2 =
0}, which is usually employed in the APA (in the NLMS whenr =
1), has no guarantee to contain the estimandumh∗ (For details, see
[9]). Hence, we use the following stochastic property sets:

Ck(ρ) :=
˘

h ∈ H : gk(h) := ‖ek(h)‖2 − ρ ≤ 0
¯

, (3)

whereρ ≥ 0 is the inflation parameter, which is designed based
on statistics of noise process (For details, see [9].ρ can be var-
ied with time.). Since the projection ontoCk(ρ) requires, in gen-
eral, huge computational complexity, we employ an approximat-
ing projection onto the closed half-spaceH−

k (h) := {x ∈ H :
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〈x − h,∇gk(h)〉 + gk(h) ≤ 0} ⊃ Ck(ρ), which has the follow-
ing simple closed-form expression:

P
H−

k
(h)

(h) =


h − gk(h)

‖∇gk(h)‖2∇gk(h), if h 6∈ H−
k (h),

h, otherwise.
(4)

Here,∇gk(h) = 2Ukek(h) andP
H−

k
(h)

(h) ∼= PCk(ρ)(h); see

[9]. Note thatP
H−

k
(h)

(h) requires onlyO(N) complexity.

B. Proposed Stereo Echo canceling algorithm

In the following, we focus on Example 1 for simplicity. LetQ ∈
N

∗ denote the cycle period of preprocessing (see [6]). Givenq ∈

N
∗, define the control sequencesI(c)

k , I(p)
k ⊂ N (each of which

corresponds to the current/previous state of inputs) asI(c)
k :=

{k, k−1, . . . , k−q+1} andI(p)
k := ∅, if 0 ≤ k ≤ Q/2, I(p)

k :=

I
(c)

k−Q/2, if k > Q/2. Define the weights
n

w
(k)
ι

o
ι∈I

(c)
k

∪I
(p)
k

⊂

(0, 1], ∀k ∈ N, to satisfy
P

ι∈I
(c)
k

∪I
(p)
k

w
(k)
ι = 1, ∀k ∈ N. Let

R(A) andR⊥(A) denote the column space of a matrixA and its
orthogonal complement, respectively (i.e.,R(A)⊕R⊥(A) = H).
DefineK(k)

ι := H−
ι (hk)∩Vk, whereVk := hk+R⊥(D1 + D3)

= hk + R⊥(C) =
˘

x ∈ H : CT x = ¸
¯

with ¸ := CT hk

andC :=

»
0N

2
I N

2
0N

2
0N

2
0N

2
0N

2
0N

2
I N

2

–T

∈ R
2N×N . In the fol-

lowing, despite many choices, we initialize the adaptive filter as
h0 = 0 for simplicity. In this case, the observation before (2)
suggests that the adaptive filter should be updated much more in
the direction along the subspaceR(D1 + D3) (= R⊥(C)) than
in the direction alongR(D2 + D4) (= R(C)) especially in the
initial stage of adaptation; see Fig. 2. From this point of view, the
proposed algorithm is given as follows.

Algorithm 1 Given sequences of input-output data(uk)k∈N
and

(dk)k∈N
, a sequence(hk)k∈N

⊂ H is iteratively generated as

hk+1 := PB4PB3PB2PB1

n
hk+λk

“
bw1

bh(1)

k + bw2
bh(2)

k −hk

”o
,

(5)
whereλk ∈ [0, 2], bw1 and bw2 are the weights satisfyingbw2 ≫
bw1 ≥ 0 and bw1 + bw2 = 1, and

bh(i)

k := hk + M(i)
k

0
B@

X

ι∈I
(c)
k

∪I
(p)
k

w(k)
ι P

S
(k)
ι,i

(hk) − hk

1
CA , (6)

∀i = 1, 2, ∀k ∈ N. Here,S(k)
ι,1 := H−

ι (hk),

S
(k)
ι,2 :=


K(k)

ι if K(k)
ι 6= ∅

H−
ι (hk) otherwise,

M
(i)
k :=

8
>>>>>>><
>>>>>>>:

P
ι∈I

(c)
k

∪I
(p)
k

w
(k)
ι

‚‚‚‚P
S

(k)
ι,i

(hk) − hk

‚‚‚‚
2

‚‚‚‚
P

ι∈I
(c)
k

∪I
(p)
k

w
(k)
ι P

S
(k)
ι,i

(hk) − hk

‚‚‚‚
2 ,

if hk /∈
T

ι∈I
(c)
k

∪I
(p)
k

S
(k)
ι,i ,

1, otherwise.

Here, P
H−

ι (hk)
(hk) is computed by(4) and, if K(k)

ι 6= ∅ (⇒

D1,3∇gι(hk) 6= 0 if hk 6∈ H−
ι (hk), whereD1,3 := D1 + D3),

P
K

(k)
ι

(hk) is computed as

P
K

(k)
ι

(hk) =

8
><
>:

hk − gι(hk)

‖D1,3∇gι(hk)‖2 D1,3∇gι(hk),

if hk 6∈ H−
ι (hk) (⇔ gι(hk) > 0),

hk, otherwise.

(7)

Note that (a) the weightsw(k)
ι can be chosen independently for

bh(1)

k and bh(2)

k and (b) the update rule to generate the sequence

(bh(2)

k )k∈N belongs to the family of embedded constraint algorithms
proposed in [13, Appendix D]. The proof of (7) is omitted because
it is verified by simple algebra. Derivation of Algorithm 1 from
Scheme 1 is also omitted due to luck of space. Instead, for bet-
ter understanding, we show a geometric interpretation of the pro-
posed algorithm in Fig.2. We setq = 1 andλk = 1 for simplicity.

The figure demonstrates thatbh(2)

k contributes toward lettinghk to

move quickly in the direction ofR⊥(C) while bh(1)

k contributes
toward lettinghk to move slowly in the direction ofR(C). Based
on the discussion before Algorithm 1, we select the weights for
bh(1)

k andbh(2)

k so thatbw2 ≫ bw1, which is the key to accelerate the
speed of initial convergence. Moreover, even if the filter moves

out from
T4

i=1 Bi after taking the average ofbh(1)

k and bh(2)

k , it is
enforced in

T4
i=1 Bi by PB4PB3PB2PB1 .

A remark on complexity of Algorithm 1 is given below.

Remark 1 Thanks to the simple structure ofD1,3, bh(2)

k is ob-
tained, like a “by-product”, from the results produced in the pro-

cess to computebh(1)

k . More precisely, comparing(4) with (7),
we see thatP

K
(k)
ι

(hk) is computed by partly using the computa-

tion process forP
H−

ι (hk)
(hk). In addition,PB4PB3PB2PB1(·)

is also easy to compute;O(N) complexity. Therefore, from a sim-
ple inspection of(5) and(6), we see that, by using2q parallel pro-
cessors, the computational complexity imposed on each processor
is almost identical to the one to computeP

H−

ι (hk)
(hk), and thus

the time to generatehk+1 from hk is proportional toO(N) com-
putational complexity. This implies that the proposed algorithm is
suitable for real time implementation, in which the time to update
the filter is strictly limited.

4. NUMERICAL EXAMPLES

In this section, the proposed algorithm is compared with the UW-
PSP (Uniformly Weighted Parallel Subgradient Projection) [8],
the APA and the NLMS algorithms with a common preprocessing
technique proposed in [6]. Input signals in channel 1 are modified
with the cycleQ = 800; see Sec. 3-B. The tests are performed,
for estimatingh∗ ∈ H := R

512(N = L = 256), under the
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Fig. 3. The proposed algorithm versus the UW-PSP, the APA and the
NLMS algorithms under SNR 25dB with common preprocessing. For the
proposed and the UW-PSP algorithms,λk = 0.4, r = 1, ρ = 0 and
q = 10. For the NLMS,µ = 0.2.

condition of Signal to Noise Ratio (SNR):= 10 log10(E{z2
k}/

E{n2
k}) = 25dB, wherezk := 〈uk, h∗〉 denotespureecho (echo

without noise), respectively. We utilize a male’s speech signal,
for (sk)k∈N, recorded at sampling rate 16kHz. To measure the
achievement level for echo path identification as well as that of
echo cancellation, we evaluate the following two criteria: Sys-
tem Mismatch(k) := 10 log10 ‖h∗ − hk‖

2/ ‖h∗‖2, ∀k ∈ N,
ERLE(k) := 10 log10

Pk
i=1 z2

i /
Pk

i=1(zi−〈ui, hi〉)
2, ∀k ∈ N.

For the proposed and the UW-PSP algorithms, we setλk = 0.4,
q = 10, ∀k ∈ N, andw

(k)
ι = 1/2q, ∀ι ∈ I(c)

k ∪ I
(p)
k , ∀k ∈ N.

The stochastic property sets are designed byr = 1 and ρ =
max{(r − 2)σ2, 0} (= 0), whereσ2 is the variance of noise;
for details, see [9]. For the proposed algorithm, we simply set
ε1 = ε3 = 1.1, ε2 = ε4 = 0.002, and bw1 = 0.1. For the
NLMS, the step size is set toµ = 0.2 by following a recommen-
dation given in [6]. For the APA, the step size is set toµ = 1,
0.05 for a comparison. For numerical stability against observable
poor excitation of the speech input signals, certain regularization
and threshold are utilized, which is the reason for the observable
flat intervals.

The results are shown in Fig. 3. We observe that the proposed
algorithm reduces the time, to drop by 20dB in system mismatch,
by 19[sec.], 11[sec.] and 4[sec.] compared with the NLMS, the
APA and the UW-PSP, respectively. Moreover, in the ERLE, the
proposed algorithm exhibits much faster convergence in the initial
phase than the other methods. Note that the proposed algorithm
keeps good steady state performance, while the APA withµ = 1
suffers from serious instability because of the noise (see [9]).

APPENDIX: Asymptotic Optimality of APSM

Recall thatK :=
Tm

j=1 Kj(6= ∅). The following lemma partly
presents the properties of Scheme 1.

Lemma 1 [11, Theorem 1] (cf. [11, Lemma 2])
(I) (Monotone approximation)

‚‚hk+1 − h∗
(k)

‚‚ ≤
‚‚hk − h∗

(k)

‚‚ , ∀k ∈ N,

∀h∗
(k) ∈ Ωk := {h ∈ K : Θk(h) = infx∈K Θk(x)}.

(II) (Asymptotic optimality)
Suppose (a)(Θ′

k(hk))k∈N is bounded, (b)∃ǫ1, ǫ2 > 0
s.t. λk ∈ [ǫ1, 2 − ǫ2], ∀k ∈ N, and (c)∃N0 ∈ N s.t. (i)
Ω :=

T
k≥N0

Ωk 6= ∅ and (ii) infx∈K Θk(x) = 0, ∀k ≥
N0. Then, we have

lim
k→∞

Θk(hk) = 0.

Under certain conditions, moreover, it is guaranteed that the se-
quence(hk)k∈N converges strongly to a pointbh ∈ K.
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