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ABSTRACT

In this study, different objective quality measures for the perfor-
mance prediction of noise reduction schemes are compared to
subjective data from psychoacoustic listening tests. It is shown
that the considered perceptual measures are appropriate to define
a quality test-bench which can be used for the development and
optimization of noise reduction schemes.

1. INTRODUCTION

Objective quality assessment for noise reduction schemes
is needed to reduce time-consuming and cost-intensive
subjective listening tests. Still, for most noise reduction
schemes proposed in the literature, technical measures that
incorporate only little psychoacoustical knowledge have
been used to evaluate the performance and to find effi-
cient parameter settings for speech enhancement. How-
ever, there have been attempts to define standard qual-
ity evaluation measures that are better suited for this task
by Hansen and Pellom in [1]. These and other psychoa-
coustical measures [2] have been applied and compared
with subjective data in studies by Marzinzik [3] for several
monaural and binaural speech enhancement algorithms.
In this study, standard noise reduction schemes are eval-
uated and optimized by means of perceptual quality mea-
sures and several technical measures in order to increase
knowledge on quality assessment of algorithms based on
recent objective measures. The algorithms considered here
belong to the class of short-term spectral attenuation
(STSA) algorithms that try to reconstruct the desired sig-
nal’s envelope in subbands by means of a time-variant fil-
ter in the frequency domain.
The algorithms contain parameters that are affecting the
amount of noise reduction. However, maximizing the at-
tenuation of noise with these parameters in general leads
to a distortion of the desired signal which can only be tol-
erated to a certain amount. Technical measures like, e.g.,
the signal-to-noise ratio enhancement (SNRE) do not in-
corporate the distortion of the desired signal. Linear qual-
ity measures like, e.g., the correlation between estimated
and true desired signal are also inappropriate as they do
not provide information whether the distortion is audi-

ble or even disturbing. Better suited for quality assess-
ment are perceptual quality measures such as PSM from
PEMO-Q [4] and PESQ [5] which have been approved for
signal distortion in audio and speech codec evaluation.
In subjective quality assessment tests of noise reduction
schemes subjects often have difficulties in rating the
overall quality which seems to be a trade-off between the
amount of background noise removal and speech distor-
tion. Another point is that background noise can even
become more annoying if processed by a suppression al-
gorithm, e.g., by introducing musical tones or amplitude
fluctuations.
The same difficulty exists for predicting the overall qual-
ity with objective measures. While it should be feasible
to quantify the amount of noise reduction or to measure
speech distortion separately, the prediction of the overall
quality seems to be more complex. The task is to find an
objective perceptual measure that has a high correlation
with the results from subjective ratings. This measure or
combination of various measures can then be used as a
test-bench for evaluation and parameter optimization in
noise reduction schemes.

2. ALGORITHMS

STSA algorithms according to Ephraim and Malah’s
weighting rules [6] where employed as single channel
state-of-the-art algorithms. These algorithms are charac-
terized by a strong reduction of noise while introducing
only little of the well knownmusical tonesor musical
noisethat result from subtracting an average noise spec-
trum from a non-stationary frame-based spectral estimate.
A detailed description of the involved filter parameters
can be found in Capṕe [7]. The most important param-
eters are two signal-to-noise ratio (SNR) estimates: An
instantaneously estimated (a posteriori) SNR and an a pri-
ori SNR estimate that is calculated by a recursive smooth-
ing of preceding a posteriori values. The considered algo-
rithms need a reliable noise power estimation. Here, the
minimum statistics method (MinStat) by Martin [8] and a
Voice Activity Detection (VAD) algorithm by Marzinzik
[3] are used.
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3. SIGNALS

The speech signals used here were taken from the Old-
enburg Logatome Speech Corpus (OLLO) [9] and con-
sisted of six sentences spoken by german male and female
speakers. The noise signals were speech-shaped noise,
cafeteria noise, icra7 noise (speech like modulated noise)
and white gaussian noise. All signals had an approximate
duration of 20 seconds and a sampling rate of 16 kHz. In
the simulation system the signals were mixed at a SNR
of 0 dB and 5 dB. The calculation of the time-variant fil-
ter was made on this mixture while the filtering process
was also done on the separate speech and noise signals for
subsequent quality assessment and the calculation of the
SNRE and other quality measures.

4. OBJECTIVE MEASURES

The quality prediction method PEMO-Q is based on a psy-
choacoustically validated quantitative model of the ”effec-
tive” peripheral auditory processing by Dau et al. [10].
The perceptual similarity measure (PSM), obtained from
PEMO-Q, is a correlation measure between two so called
internal representationsof acoustic stimuli, i.e., the out-
put of the modeled peripheral auditory system. PSM
serves to predict the perceived similarity between two
given signals, generally a reference signal and a test signal
whose quality is to be measured.
The aim of the noise reduction scheme can be defined
as to achieve a higher perceived similarity between the
processed signal and the desired signal than between the
unprocessed and the desired signal. These two perceived
similarities are estimated by PSM. The difference between
these two PSM measures, referred to as∆PSM, serves
to measure the performance of a noise reduction algo-
rithm. Positive∆PSM values predict a higher quality of
the processed signal compared to the unprocessed signal,
whereas negative values indicate a signal degradation.
The PSM measure was also varied with an option called
Beerends-Berger-assimilation. A discussion on this as-
similation step can be found in [4]. The measure with this
option switched off is referred to as PSMb.
As another psychoacoustical measure, the ITU standard
measure PESQ is used to evaluate the quality of the pro-
cessed data. PESQ stands for ”Perceptual Evaluation of
Speech Quality” and is an enhanced perceptual quality
measurement for voice quality in telecommunications [5].
The difference between the unprocessed signal’s quality
and the processed signal’s quality prediction by PESQ is
referred to as∆PESQ.
For both psychoacoustical measures, using clean speech
as a reference might not be appropriate to predict the
degradation of the speech signal introduced by the algo-
rithms. Therefore it could be helpful to blind out the in-

fluence of the noise reduction on the predicted quality. As
one possible solution, we suggest to use a mixture of the
signal plus noise, at a SNR that corresponds to that of the
processed signal, as the reference signal. In the follow-
ing the measures which use a noisy reference signal are
referred to as SNRPSM and SNRPESQ.
Besides the above perceptual measures also more ”techni-
cally based” quality measures where incorporated. These
were SNRE, coherence, a critical bandwidth weighted
SNRE (freq. wt. SNRE), and the quality evaluation
measures defined by Hansen and Pellom [1]: segmen-
tal SNR, Log-Area Ratio (LAR), Log-Likelihood Ratio
(LLR), Itakura-Saito Distance (ISD) (the last three mea-
sures are based on a LPC-Model).

5. EXPERIMENTS

5.1. Signal processing and objective quality assess-
ment
The recursive smoothing parameterτ for the a priori SNR-
estimate in Ephraim and Malah’s algorithms has great in-
fluence on the noise reduction strength. In order to find an
optimal setting and to cover a broad range of qualities for
a subsequent correlation analysis of objective and subjec-
tive measures,τ was varied in the range from0− 800ms.
All signals were processed with the noise estimators Min-
stat and VAD, respectively. For each setting, the above
mentioned quality measures were calculated for a num-
ber of speech signals mixed with different types of noise
(see Section3). For subjective listening tests a subset of
7 time-constants per noise type, algorithm and input-SNR
was chosen.

5.2. Subjective listening tests and quality assessment
The subjective listening tests were done according to
the ITU-T Recommendation P.835 [11] which describes
a methodology for evaluating the subjective quality of
speech in noise and is particularly appropriate for the eval-
uation of noise suppression algorithms. The methodol-
ogy uses separate absolute categorial rating scales (ACR)
to independently estimate the subjective quality of the
speech signal alone, the background noise alone and the
overall quality. 16 normal hearing subjects were tested.
The whole test consisted of 8 sessions with 15 trials each
and took approximately 1 hour. One trial was composed
of three sub-samples. Each sub-sample consisted of two
sentences, male and female talkers, of 3.25 seconds du-
ration each. In the first sub-sample the subjects were in-
structed to attend only to the background noise and rate it
on a five category scale from ”1 - sehr störend” (very dis-
turbing) to ”5 - gerade wahrnehmbar” (just noticeable). In
the second sub-sample subjects were instructed to attend
only to the speech signal and rate it on a scale from ”1 -
sehr stark verzerrt” (very much distorted) to ”5 - unverz-
errt” (not distorted). In the third sub-sample subjects were
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instructed to listen to the speech + background and rate it
on a five category overall quality scale from ”1 - schlecht”
(bad) to ”5 - ausgezeichnet” (excellent). The ratings were
done with an ACR - software using sliders that allowed a
sub-categorial rating in 0.1 steps.

6. RESULTS

Fig. 2 shows the subjective data in the left panels for both
noise estimators and two of the four noise types. Initially,
it can be stated that all subjective tests - independent of
noise type, input-SNR or noise estimators - show consis-
tent behavior in the way that the perceived speech-signal
qualities (red curves) decrease and the amount of per-
ceived noise reduction (green curves) increase monoton-
ically by increasing the smoothing constantτ . As stated
before, the overall quality ratings (black curves) seem to
be a trade-off between both rating tasks. Obviously the
subjects prefer in virtually all cases a certain amount of
smoothing. Another point is that the two noise estima-
tors, MinStat and VAD, show different performance for
fluctuating noise, e.g., speech-modulated icra7-noise, but
similar behavior for stationary noise while the mean opin-
ion score (MOS) for the overall quality is almost the same.
The subjects reported that - especially in cases of fluctuat-
ing noise - they were uncertain what to prefer - reducing
noise and accepting signal-distortion or the opposite. This
may be the reason why there was no preference for one of
the noise estimators observable although the outputs were
very different.
To find out which objective measure describes the respec-
tive quality rating tasks best, the correlation between dif-
ferent objective measures and the subjective data were
evaluated (see Tab.1). The highest correlations of all
objective measures are indicated with bold black num-
bers, the highest negative correlations are printed in red.
The first four columns show the correlation for each noise
type separately. The last column contains the overall cor-
relation for all signal types, algorithms, and input-SNR’s.
Rows 1-7 show more technically measures, i.e. these mea-
sures are not based on a complex psychoacoustic model.
Rows 8-12 contain the perceptual measures and their rel-
ative enhancement representations (∆PSM, ∆PESQ) all
with clean speech reference. The last rows contain the per-
ceptual measures but with an output-SNR-aligned noisy
reference signal, indicated by the prefix ”SNR”.
As for the background noise rating, the highest correla-
tions are gained by the SNRE. This means that SNRE is a
good measure to rate the amount of noise reduction by an
algorithm, independent of the speech signal quality. Also,
high correlation values are gained by the∆PSM measure
if different types of background noise are considered sepa-
rately. The correlation for∆PSM with the subjective data
can be seen in Fig.1. The functional relationship be-

tween subjective and objective measures varies across dif-
ferent types of background noise (color-coded), hence the
overall correlation is less. As a consequence the objective
measure should incorporate some noise dependent scaling
to better model the subjective data.

Figure 1: Noise dependent correlation between objective
and subjective data

In terms of speech-signal rating most of the correlations
are negative. The strongest anticorrelated measure is the
frequency weighted SNRE, which may result from the fact
that noise reduction and speech distortion are competing
processes in the considered algorithms. The strongest cor-
relations show the perceptual measures with the noisy ref-
erence, especially SNRPESQ, as expected.
The best correlation in terms of overall quality rating show
the perceptual measures with clean speech reference, es-
pecially PESQ and PSMb.
The right panels in Fig. 2 show the prediction of the
subjective data on the left panels by the objective mea-
sures that had the highest correlations for each rating task,
i.e., SNRE for the prediction of perceived noise reduction,
SNR PESQ for the speech-signal degradation and PSMb
for the prediction of the overall quality. The curves have
been linearly fitted to match the scaling of the MOS.

7. SUMMARY AND OUTLOOK

The results show that objective measures are able to pre-
dict subjective ratings in noise reduction schemes. In
terms of noise reduction alone the SNRE measure is
appropriate, but for objective assessment of perceived
speech signal distortion or overall quality, perceptual mea-
sures such as PESQ and PSM (PEMO-Q) are better suited.
Whereas PESQ was optimized for speech quality, PSM is
a global audio quality measure that is also applicable to,
e.g., processed music and transients. A selection of the
best objective measures for each rating task together with
representative noise types will be used as a test-bench for
the development of novel noise reduction schemes.
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Correlation with
background
noise rating

Cafeteria
noise

White
noise

Speech-
shaped
noise

ICRA7
noise

Overall-
Correlation

SNRE 0.93 0.91 0.88 0.90 0.75
Coherence 0.50 0.67 0.58 0.68 0.53
seg. SNRE 0.71 0.62 0.63 0.84 0.54
freq. wt. SNRE 0.70 0.79 0.54 0.66 0.49
mean LAR 0.33 -0.89 0.18 0.35 -0.06
mean LLR -0.08 -0.73 0.06 0.05 -0.14
mean ISD 0.55 -0.51 0.54 0.67 0.20
PSM 0.57 0.89 0.84 0.70 0.69
PSM_b 0.52 0.66 0.70 0.69 0.60
PESQ 0.37 0.66 0.64 0.62 0.63
ΔPSM 0.76 0.92 0.89 0.83 0.62
ΔPESQ 0.42 0.81 0.64 0.84 0.56
SNR_PSM -0.56 -0.49 -0.39 -0.58 -0.28
SNR_PESQ -0.60 -0.81 -0.58 -0.53 -0.41

Correlation with
speech signal
rating

Cafeteria
noise

White
noise

Speech-
shaped
noise

ICRA7
noise

Overall-
Correlation

SNRE -0.67 -0.77 -0.94 -0.87 -0.67
Coherence 0.27 0.02 -0.21 -0.04 -0.05
seg. SNRE -0.06 0.09 -0.32 -0.46 -0.17
freq. wt. SNRE -0.90 -0.89 -0.79 -0.93 -0.70
mean LAR -0.88 0.33 -0.46 -0.67 -0.06
mean LLR -0.66 0.01 -0.41 -0.72 -0.22
mean ISD -0.79 -0.13 -0.63 -0.89 -0.62
PSM 0.22 -0.31 -0.58 -0.07 -0.15
PSM_b 0.25 0.07 -0.38 -0.06 -0.02
PESQ 0.41 0.06 -0.33 0.05 -0.01
ΔPSM -0.05 -0.75 -0.90 -0.49 -0.39
ΔPESQ 0.34 -0.27 -0.73 -0.52 -0.23
SNR_PSM 0.84 0.76 0.67 0.87 0.61
SNR_PESQ 0.87 0.92 0.86 0.87 0.74

Correlation with
overall quality
rating

Cafeteria
noise

White
noise

Speech-
shaped
noise

ICRA7
noise

Overall-
Correlation

SNRE 0.35 0.66 0.41 0.29 0.35
Coherence 0.83 0.88 0.93 0.93 0.65
seg. SNRE 0.74 0.89 0.89 0.71 0.53
freq. wt. SNRE -0.17 0.40 -0.05 -0.11 0.00
mean LAR -0.46 -0.90 -0.45 -0.28 -0.07
mean LLR -0.75 -0.94 -0.61 -0.68 -0.43
mean ISD -0.24 -0.79 -0.04 -0.16 -0.34
PSM 0.82 0.92 0.93 0.87 0.70
PSM_b 0.85 0.91 0.94 0.93 0.76
PESQ 0.85 0.92 0.94 0.94 0.81
ΔPSM 0.71 0.69 0.58 0.54 0.39
ΔPESQ 0.86 0.92 0.48 0.65 0.47
SNR_PSM 0.12 -0.04 0.09 0.01 0.04
SNR_PESQ 0.09 -0.36 0.05 0.07 0.00

Table 1: Correlation between objective and subjective
measures for the three rating tasks and the types of back-
ground noises.
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