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ABSTRACT ...,z (t) that represent the mixtures. These mixtures are sup-

posed linear and instantaneous, i.e.
This paper introduces new algorithms for the blind sepamatf

audio sources of instantaneous and convolutive mixturegus N )
modal decomposition. Indeed, audio signals and, in paaticu i(t) = Zaiﬂ'sﬂ' ) i=1....,M. (1)
musical signals can be well approximated by a sum of damped J=1

sinusoidal (modal) components. Based on this represenfati  This can be represented compactly by the mixing equation
we propose a two steps approach consisting of a signal éalys

(extraction of the modal components) followed by a signalsy x(t) = As(t) (2
thesis (pairing of the components belonging to the sameaspur
For the signal analysis, we consider a parametric estimaitio where s(t) def [s1(2),...,sn(t)]" isaN x 1 column vec-

gorithm using ESPRIT technique. A major advantage of the pro tor collecting the source signals, vecteft) similarly collects
posed m_ethod_re5|des inits abll_lty to separatg more sothees the M observed signals, and tHe x N mixing matrix A def
sensors in the instantaneous mixture case. Slmu|atI0|‘[S.l’GBB [a1,...,an] With a; = [a1s,...,an:]T contains the mixture
given to assess the performance of the proposed algorithm. coefficients. We will suppose that for any péirj) with i # 7,

the vectors,; anda; are linearly independent.
1 INTRODUCTION The source signals are s_upposed to be decomposable in a sum of
modal components] (¢), i.e:

The problem of blind source separation consists of findidg-in I

pendent source signals from their observed mixtures withou si(t) = Z c(t) t=0,...,T—1. (3)
priori knowledge on the actual mixing matrix. =1

The source separation problem is of interest in variousiappl ) o

cations [1] such as the localization and tracking of targmts ~ The usual source independence assumption is replacedihare b
ing radars and sonars, separation of speakers (problemnknow duasi-orthogonality assumption of the modal componerés, i

as “cocktail party”), detection and separation in multipteess i

communication systems, independent components analf/sis o (cileir) ~0 for (i,5) # (,§) (4)
biomedical signals (EEG or ECG), separation of multisgectr ||c{||||c{,’|| ’ ’

astronomical images etc.

In the case of non-stationary signals (including the audje s  Where _—

nals), certain solutions using time-frequency analysithefob- ji g’y def TR

servations exist for the underdetermined case [4,5]. fyhper, (eile) = ch(t)c;/ ®) ®)

we propose an approach using modal decomposition of the re-
ceived signals [3]. More precisely we propose to decompuse t 112 = () ©)
signal into its various modes. The audio signals and mottcpar dll T Am s

ularly the musical signals can be modeled by a sum of damped In this work, the modal components are in fact damped sinigsoi
sinusoids [6] and hence are well suited for our separation ap and hence:

-

t=0

and

proach. We propose here to exploit this last property foste dit)y=» {ajzjt} @)
aration of audio sources by means of modal decomposition. To o
start, we consider first the case of instantaneous mixttines, wherea{ represents the complex amplitude arjd: edi i
we treat the more challenging problem of convolutive miggur  is the pole wherel’ is the negative damping factor and is the
in the overdetermined case. angular-frequencyt(-) represents the real part of a complex en-

tity. For the extraction of the modal components, we profose
use the ESPRIT-like (Estimation of Signal Parameters vi@Ro

2. INSTANTANEOUSMIXTURE CASE tion Invariance Technique) technique that estimates thespaf
) the signals by exploiting the row-shifting invariance pedy of
2.1. Datamodel and assumptions the data Hankel matrix. We use Kung’s algorithm given irt [3]
The blind source separation model assumes the existente of INote that fast and efficient implementation of this algaritexists
independent signals (¢), . . ., sy (t) andM observations: (), in [7].
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For the synthesis of the source signals one observes thaksh
to the quasi-orthogonality assumption, one has:

| (z1e])
(xlcl) aor _1 ;
[EIETEE

Q

(zarcl)

wherea; represents thé" column vector ofA. We can then as-
sociate each estimated componé&nto a space direction (vector
column of A) that is estimated by

&
o _ (@)

ColiEle

7

Two components of a same source signal are associated to the

same column vector ok. Therefore, we propose to gather these
components by clustering the vect@sinto N classe€. One
will be able to rebuild the initial sources up to a constant by
adding the various components within a same class.

2.2. Parametric signal analysis

In this section we present an alternative solution for dignaly-
sis. For that, we represent the source signal and hence $ee-ob
vations as sum of damped sinusoids:

I‘k(t) =% {Z Oclysz}

whereq; ; represents the complex amplitude and= el i

is thel*" pole whered; is the negative damping factor ang is
the angular-frequencyi(-) represents the real part of a complex
entity.

8)

5. Estimate the complex amplitudes by solving the leastrsgua
fitting criterion

min||x; — Za||* & a = Z¥x;
o«

(10)
wherex; = [21(0)...2x(T — 1)]7 is the observation
vector,Z is a Vandermonde matrix constructed from the
estimated poles and is the vector of complex ampli-
tudes.

2.3. Signal synthesisusing vector clustering

For the synthesis of the source signals one observes thatstha
to the quasi-orthogonality assumption, one has:

| (z1lel)
(xlel) aer 1 ;
el Tl

~ a;
(zmlc)
wherea; represents the" column vector ofA. We can then

associate each componéﬁtto a space direction (vector column
of A) that is estimated by

Two components of a same source signal are associated to the
same column vector o, Therefore, we propose to gather these
components by clustering the vect@ﬁ into N classes. One

will be able to rebuild the initial sources up to a constant by
adding the various components within a same class.

3. CONVOLUTIVE MIXTURE CASE

For the extraction of the modal components, we propose to use3.1. Data model and assumptions

the ESPRIT-like (Estimation of Signal Parameters via Rotat
Invariance Technique) technique that estimates the pdldseo
signals by exploiting the row-shifting invariance propest the

D x (T — D) data Hankel matriX* (zx)]n, n, O e (n1+n2),

D being a window parameter chosen in the rafig@ < D <
2T/3.

We use of Kung's algorithm given in [3] that can be summarized
in the following steps:

1. Form the data Hankel matrid (xy ).

2. Estimate the2L-dimensional signal subspadé®) =
[ui...uzz] of H(z) by means of the SVDu; ... usr
are the principal left singular vectors Bf(xx)).

3. Solve (inthe least squares sense) the shift invarianee eq
tion

uPv=uY s v=uP*ul? ()

where¥ = ®A®~*, & being a non-singula2L x 2L
matrix andA = diag(z1, 23, .. ., z1, 2;). ()* denotes
the pseudo-inversion operation and arrgvesxd{ denote
respectively the last and the first row-deleting operator.

4. Estimate the poles as the eigenvalues of malrix

2There exist techniques that perform both the clusteringtheds-
timation of the number of classes. For simplicity, we assiimere the
number of sources known.

The convolutive mixture case can be represented by:

L
x(t) => H()s(t — 1) + w(t) (11)
=0
whereH(l) are M x N matrices forl € [0, L] representing
the impulse response coefficients of the channel. We carslde
here only the overdetermined case (> N) and the polyno-

L
mial matrix H(z) = Y. H(l)z~' is assumed to be irreducible
1=0

(i.e. H(z) is of full column rank for allz). The sources are
assumed, as in the instantaneous mixture case, to be desompo
able in a sum of damped sinusoids satisfying approximakaly t
guasi-orthogonality assumption (4).

Knowing that the convolution preserves the different mooles
the signal, we can exploit this property to estimate theeckffit
modal components of the source signal using the same approac
as in the instantaneous mixture case.

3.2. Signal synthesisstep

Once the modal components of all source signals are estimate
one needs to group them in such a way to reconstruct each of
the sources. Now this problem is more complex than in the in-
stantaneous mixture case as the correlation of one signal co
ponentc! of the i*" source signal with the observation leads
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. L .
to an estimate of the vectdx;(c!) def S hi(l)(c]

/)~ where
1=0

H(l) € [hi(l)... ha (D).

Clearly, h;(c!) depends on both th&" channel (associated to
the i*" source signal) and on the pole of the considered modal
component;. Consequently, contrary to the instantaneous mix-

ture case, two components andc{, of a same source signal do
not correspond to vectors of a same spatial direction. Her th
reason, we propose another synthesis solution that exsioit-
space orthogonality together with an appropriate sparsig-
sure.

Indeed, considering the data model in (11) and for a givagéa
enough’ window parametes one has:

xuw(®) XTI (@) ... xTt+w—1))T =Hsu(t) (12)
whereH is a block-Sylvester matrix of full column rank (see [8]
for more details) and,, (t) = [s¥(t — L)...sT(t +w — 1)]7.
Hence, the data matriX,, = [xw(0)...xw (T — w)] is given
by

Xw =HSw 3)
This structure suggests to exploit the signal subspaceateth

[9] to characterize the source signals. More preciselygiie
SVD of X,, one can write (in the noiseless case)

X,=U[Z 0] (14)

v
vir |

whereV,, is a basis of the orthogonal subspaceimnge(ST).
Hence,V,, satisfies

SuV,=0 (15)

Using the block Hankel structure &f,,, one can transform the
above equality into

V.St =0 (16)
whereSt = [s(—L)...s(T —1)]T andV,, is a noise subspace
projection matrix constructed froiw,, as shown in [9]. Using
the modal decomposition (3) of the sources, one can write

Sr = CA (17)

whereC is the matrix whose column vectors correspond to the
modal components! = [c¢/(—L)...c}(T — 1)]*. Therefore
equation (16) becomes

V,.CA =0 (18)

In other wordsA belongs to the Kernel of

Q ¥ cfiviy,c

Let P be a matrix whoseV column vectors form a basis of
Ker(Q). Then

A=PA (19)

whereA is an unknownV x N matrix. This means that the sub-
space solution provides an instantaneous mixture of thessu
To estimate the desired matrix, we propose to use a sparsity
criterion as shown next.

3.3. Sparsity based criterion

Let us observe that, under the data model assumption, eaateso
signals; is a linear combination of a reduced numlbeof the
modal components. In other words, the column vectord of
should be sparse in the sense that each of them is zero ercept f
a reduced number of entries.

Now, to get the appropriate matrix, we exploit this property
and search for a non-singulaf x N matrix A such thatA is
sparse. To guarantee that all sources are extracted (irothe
singularity of A), we proceed as follows.

Without loss of generality assume that the sources are texcor
lated and of unit norm so that

1
TS?ST ~ 1 (20)

Hence,
%KHPHCHCPK ~ 1 1)
ThereforeA can be estimated up to a unitary matfikas the
inverse square root of
1
S= TPHCHCP (22)
A=8:U (23)
Now, to obtain the remaining unitary matfX, we use the spar-
sity of A. We estimatdU in such a way to minimize
_1
[Allp = [[PS™2 U, (24)
where|| - ||, represents thé&, normp < 2 (in our simulation
we usedp = 1) which is know to be a good measure of spar-
sity [10].
To minimize (24) under unitary constraint, we decompbtkas
product of Givens rotation so that we minimize the criteriten-

atively as in [11] where at each iteration only one scalaation
is optimized using a line search technique.

4. SIMULATION

We present first a simulation example in the instantaneows mi
ture case that illustrates the performance of our blind reepa
tion algorithm. For that, we consider a uniform linear array
with M = 3 sensors receiving the signals from = 4 au-

dio sources. The angles of arrival of the sources are chosen
randomly. The sample size is setTo= 5000 samples. The
observed signals are corrupted by an additive white noise-of
variances’I (o2 being the noise power). The separation quality
is measured by the normalized mean squares estimatiors error
(NMSE) of the sources evaluated over 100 Monte-Carlo runs.
The plots represent the averaged NMSE overXhsources. In
figure 1, we compare the separation performance obtained by
our algorithm using the parametric technique with= 30 for

i =1,...,N. As areference, we plot also the NMSE obtained
by pseudo-inversion of matriA (assumed exactly known). In
figure 2, we present a simulation example in the convolutive
mixture case that illustrates the performance of our bliep-s
aration algorithm. For that, we consider a uniform lineaagr
with M = 4 sensors receiving the signals fraW = 3 audio
sources in noiseless case. The filter coefficients are clrasen
domly and the channel order Is = 3. The sample size is set
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Figure 1: NMSE versus SNR for 4 audio sources and 3 sensors
in instantaneous mixture case: comparison of the perfooaan
of our algorithm with the pseudo-inversion of mixing matfix
(assumed exactly known).

to T' = 1500 samples. the upper line represents the original
source signals, the second line representsithenixtures and
the bottom one represents estimates of sources by ourthigori
We have observed in our simulation that the propose algorith
is very sensitive to noise effect. Obtaining a robust sofuis
still an open problem under investigation.

T

(@) s1(t) (b) s2(t) (c) s3(t)
(d) z1(t) (e) w2(t) () =3(t) (9) 4 (2)
(h) 51(t) (i) s2(t) (i) 33(t)

Figure 2: Blind source separation example for 3 audio sources
and 4 sensors in convolutive mixture case: the upper linesrep
sents the original source signals, the second line reptssite

5. CONCLUSION

This paper introduces a new blind separation method foroaudi
type sources using modal decomposition. The proposed whetho
can separate more sources than sensors in the instantamieeus
tures case and provides, in that contest, a better separptadl-

ity than the one obtained by pseudo-inversion of the mixtoae

trix (even if it is known exactly). For the convolutive mixgu
case we propose to use again modal decomposition but the sig-
nal synthesis is more complex and requires the use of subspac
projection in conjunction with an appropriate sparsityesion.
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