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ABSTRACT

The problem of poor excitation is often encountered in acous-
tic echo cancellation, due to the high coloration of audio signals
and the large dimension of the room impulse response parameter
vector. Poor excitation leads to a large variance of the impulse
response estimate, resulting in a slowly converging adaptive al-
gorithm. The standard solution is to add a scaled identity matrix
to the ill-conditioned input correlation matrix, where scaling is
performed with an estimate of the near-end background noise
power. We illustrate how this type of regularization fits in a lin-
ear minimum mean square error framework and how regular-
ization may be improved by incorporating prior knowledge on
the room impulse response. Prior knowledge can be constructed
based on some physical parameters of the acoustic setup. Off-
line simulation results indicate that the proposed regularization
technique may yield a low-variance room impulse response esti-
mate.

1. INTRODUCTION

Acoustic echo cancellation (AEC) has been a popular research
topic in acoustic signal processing, motivated mainly by the in-
creasing demand for hands-free speech communication. A clas-
sical AEC scenario is shown inFigure 1. A speech signalu(t)
from the far-end side is broadcasted in an acoustic enclosure (the
’room’) by means of a loudspeaker. A microphone is present in
the room for recording a local signalv(t) (the ’near-end sig-
nal’) which is to be transmitted back to the far-end side. An
acoustic echo path exists between the loudspeaker and the micro-
phone such that the recorded microphone signaly(t) = x(t) +
v(t) contains an undesired echo componentx(t) in addition to
the near-end signal componentv(t). If the echo path transfer
function is modelled as a finite impulse response (FIR) filter
F (q, t) , f0(t)+f1(t)q

−1 + . . .+fnF
(t)q−nF , then the echo

component can be considered as a filtered version of the loud-
speaker signal:x(t) = F (q, t)u(t). Hereq denotes the time
shift operator, e.g.q−ku(t) = u(t − k). The main objective in
AEC is to identify the unknown room impulse response (RIR)
F (q, t) and hence to subtract an estimate of the echo component
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Figure 1: A typical acoustic echo cancellation (AEC) scenario.

from the microphone signal. In this way an echo-compensated
signald(t) = y(t)− F̂ (q, t)u(t) is sent to the far-end side, with
F̂ (q, t) an estimate ofF (q, t).

It is well-known that audio signals exhibit a high degree of tonal-
ity which may result in an ill-conditioned correlation matrix in
least squares parameter estimation. The standard solution to this
problem is to add a scaled identity matrix to the input correla-
tion matrix and hence reduce its eigenvalue spread. This tech-
nique is known as Tikhonov [1] regularization. Using this mod-
ified correlation matrix can be interpreted as solving a regular-
ized least squares problem (also known as ridge regression) in
which the squared norm of the unknown parameter vector (con-
taining the RIR coefficients) is added to the least squares cost
function. With exponential weighting this leads to the leaky
RLS algorithm [2], which is the Gauss-Newton counterpart to
the more well-known leaky LMS algorithm [3]. Instead, we
propose to regularize the cost function by adding the weighted
squared norm of the unknown parameter vector. The optimal
weighting matrix in a mean square error (MSE) sense is given
by linear estimation theory [4]. If the unknown parameter vec-
tor is regarded as a realization of a stochastic vector process, the
optimal weighting matrix for regularization is given by the co-
variance matrix of the vector process. This covariance matrix
can be either constructed from prior knowledge on the RIR, or
estimated concurrently with the RIR.

In Section 2 we will introduce the concept of regularization in
least squares parameter estimation. The linear minimum mean
square error estimator is derived inSection 3 and its relationship
to the regularized least squares estimator is pointed out.Section
4 describes a novel method to gather prior knowledge on a room
impulse response for constructing a diagonal non-identity regu-
larization matrix. InSection 5 we show some off-line simulation
results and finallySection 6 concludes the paper.
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2. REGULARIZATION IN LEAST SQUARES
PARAMETER ESTIMATION

The off-line identification of the RIRF (q, t) can be considered
as a linear estimation problem with the RIR coefficients col-
lected in the parameter vectorf :
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or in matrix notation

y = Uf + v. (1)

An estimator forf may be obtained by minimizing the least
squares (LS) criterion

min
f̂

VLS(f̂) = min
f̂

(y − Uf̂)T (y − Uf̂) (2)

which results in the well-known LS estimator
¨

§

¥

¦
f̂LS = (UT

U)−1
U

T
y. (3)

When the input signalu(t) is not (or hardly) persistently excit-
ing, as is often the case when using audio signals, the matrix
UT U may be ill-conditioned or even singular. A common solu-
tion is to apply Tikhonov regularization [1] by adding a scaled
identity matrix toUT U:

¨

§

¥

¦
f̂RgLS = (UT

U + αI)−1
U

T
y. (4)

In [5] it was shown that choosing the regularization parameter
α in the neighbourhood of the near-end background noise power
σ2

v has a beneficial influence whenf is identified recursively. We
will show below that:

• the estimator in (4) withα = σ2

v is optimal in a min-
imum mean square error (MMSE) sense if the near-end
background noise is drawn from a zero-mean stationary
white noise process with varianceσ2

v and if the unknown
parameter vectorf can be considered as a realization of a
zero-mean, unit-variance vector white noise process,

• it may be convenient to replace the scaled unity matrixαI

in (4) by a non-identity regularization matrixP:

f̂RgLS = (UT
U + P)−1

U
T
y. (5)

3. LINEAR MIMIMUM MEAN SQUARE ERROR
ESTIMATION

Let us derive an expression for the minimum mean square error
(MMSE) estimator off :

min
f̂

VMMSE(f̂) = min
f̂

E(f̂ − f)T (f̂ − f) (6)

under the following assumptions:

• The estimator is a linear function of the data iny:

f̂MMSE = Z
T
y. (7)

• The measurement noise inv is drawn from a stationary
white noise process with zero mean and varianceσ2

v:

µv , Ev = 0, (8)

Rv , cov(v) = Evv
T = σ

2

vI. (9)

• The true parameter vectorf is considered as a random
variable on which some prior knowledge may be avail-
able. More specifically, let the prior probability density
function (PDF)p(f) be characterized by its first and sec-
ond order moments:

µf , Ef , (10)

Rf , cov(f) = E(f − Ef)(f − Ef)T
. (11)

Then the linear MMSE estimator can be obtained as the mean of
the posterior PDFp(f |y) after the data have been recorded [4]:

f̂MMSE = E(f |y) (12)

= µ + (UT
Rv

−1
U + Rf

−1)−1
U

T
Rv

−1(y − Uµ).

We will construct the prior knowledge onf in such a way that
µf = 0. Then, also using the white noise assumption in (9), the
expression for̂fMMSE can be rewritten as

¨

§

¥

¦
f̂MMSE = (UT

U + σ
2

vRf
−1)−1

U
T
y. (13)

From this point of view, applying Tikhonov regularization as in
(4) withα = σ2

v is equivalent to assuming that the true parameter
vectorf is drawn from a stationary vector white noise process.
In room acoustics applications however, more information on the
true parameter may be available and an appropriate non-identity
covariance matrixRf can be constructed.

4. GATHERING PRIOR KNOWLEDGE ON ROOM
ACOUSTICS

If an LS estimator with Tikhonov regularization is applied in
the AEC problem, the regularization matrixP = αI (with the
regularization parameter chosen asα = σ2

v) looks as inFigure
2.
A room impulse response has a very typical form, which may be
characterized by three parameters, as illustrated inFigure 3:

• the initial delay, which corresponds to the time needed
by the loudspeaker sound wave to reach the microphone
through a direct path (i.e. without reflections),

• the direct path attenuation, which determines the peak
response in the RIR, and

• theexponential decay rate, which models the reverberant
tail of the RIR.

These three parameters may be estimated from the acoustic setup
(distance between loudspeaker and microphone, acoustic absorp-
tion of the walls, room volume, etc.), e.g. using Sabine’s rever-
beration formulas [6]. Hence they can be considered as prior
knowledge. If these three parameters are taken into account, a
diagonal regularization matrix may be constructed that looks as
in Figure 4.
An idealized case, which is interesting as a reference method,
occurs when the true RIR is known. In this case a diagonal regu-
larization matrix may be constructed with the diagonal elements
equal to the inverse square values of the true parameter vector
coefficients, as illustrated inFigure 5.
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Figure 2: Visualization of traditional regularization matrix (hor-
izontal: matrix indices, vertical: matrix element value)
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Figure 3: Room impulse response characterized by three param-
eters.
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Figure 4: Visualization of regularization matrix based on 3 pa-
rameters (horizontal: matrix indices, vertical: matrix element
value)
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Figure 5: Visualization of regularization matrix based on true
RIR (horizontal: matrix indices, vertical: matrix element value)

5. OFF-LINE SIMULATION RESULTS

In a series of preliminary simulations, four different least squares
estimators were compared for the AEC application:

• the LS estimator̂fLS without regularization,

• the regularized LS estimator̂fRgLS with Tikhonov regu-
larization:P = σ2

vI,

• the regularized LS estimator̂fRgLS with regularization
based on the three RIR parameters described above:P =
σ2

vR
−1

f ,synth, and

• the regularized LS estimator̂fRgLS with regularization
based on the true RIR:P = σ2

vR
−1

f ,true.

For each estimator, 100 simulation runs were performed with
a different near-end noise realization (drawn from a stationary
white noise process). The normalized distance between the re-

sulting estimates and the true RIR,‖f̂−f‖
‖f‖

, is plotted in a box-
plot to compare the bias and variance of the different estima-
tors (seeFigures 6, 7, 8 and9). The data record length was10
times the parameter vector length. The average echo to near-end
noise ratio was set to10dB. The sampling rate was equal to
fs = 8kHz. Two types of loudspeaker signals were used:

• a sum ofnF − 1 sinusoids with random frequencies, uni-
formly distributed in the interval between DC and the
Nyquist frequency, and

• a male speech signal.

Two types of acoustic impulse responses were measured in a
realistic situation and used in the simulation:

• a hearing aid impulse response withnF + 1 = 100 coef-
ficients, and

• a room impulse response withnF + 1 = 1000 coeffi-
cients.

6. CONCLUSIONS AND FUTURE WORK

We have proposed to tackle the poor excitation problem occur-
ing in acoustic echo cancellation by adding a non-identity reg-
ularization matrix to the input correlation matrix. In this way a
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Figure 6: Boxplots for hearing aid impulse response and sum of
sinusoids input signal.

0.05

0.1

0.15

0.2

0.25

0.3

0.35

‖f̂−f‖2

‖f‖2

f̂LS f̂RgLS

P = σ2

vI

f̂RgLS f̂RgLS

P = σ2

vR
−1

f ,trueP = σ2

vR
−1

f ,synth

u(t) = speech

F (q) = hearing aid IR

Figure 7: Boxplots for hearing aid impulse response and speech
input signal.
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Figure 8: Boxplots for room impulse response and sum of sinu-
soids input signal.
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Figure 9: Boxplots for room impulse response and speech input
signal.

low-variance estimate of the room impulse response can be ob-
tained which approaches the linear minimum mean square error
estimate, depending on the quality of the prior knowledge that is
available. We have proposed a three-parameter model to gather
prior knowledge on a room impulse response and to construct
a diagonal non-identity regularization matrix. Off-line simula-
tions show that for different types of loudspeaker signals and for
different acoustic scenarios, the proposed regularization method
yields a lower variance and a lower excess error than the unreg-
ularized and Tikhonov-like regularized estimators. Future work
will focus on developing recursive identification algorithms that
incorporate the proposed regularization technique, while avoid-
ing a dramatic increase in computational complexity.
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