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ABSTRACT fom u(t)
far-end L

The problem of poor excitation is often encountered in acous-
tic echo cancellation, due to the high coloration of audio signals
and the large dimension of the room impulse response parameter
vector. Poor excitation leads to a large variance of the impulse

4
acoustic
echo path

response estimate, resulting in a slowly converging adaptive al- ()
gorithm. The standard solution is to add a scaled identity matrix to . N
to the ill-conditioned input correlation matrix, where scaling is far-end d(t) + + y(t) D u(t)

performed with an estimate of the near-end background noise
power. We illustrate how this type of regularization fits in a lin-
ear minimum mean square error framework and how regular-
ization may be improved by incorporating prior knowledge on
the room impulse response. Prior knowledge can be constructed
based on some physical parameters of the acoustic setup. Off-
line simulation results indicate that the proposed regularization from the microphone signal. In this way an echo-compensated
technique may yield a low-variance room impulse response esti-signa|d(t) =y(t) — F((L t)u(t) is sent to the far-end side, with
mate. F(g,t) an estimate of"(q, t).

Figure 1: A typical acoustic echo cancellation (AEC) scenario.

1. INTRODUCTION _It is wgll-known that a_udio s_ignals g)_(hibit a high dggree of t_oryal-
ity which may result in an ill-conditioned correlation matrix in

Acoustic echo cancellation (AEC) has been a popular researchl€ast squares parameter estimation. The standard solution to this
topic in acoustic signal processing, motivated mainly by the in- Problem is to add a scaled identity matrix to the input correla-
creasing demand for hands-free speech communication. A clas{ion matrix and hence reduce its eigenvalue spread. This tech-
sical AEC scenario is shown Figure 1. A speech signak(t) nique is known as Tikhonov [1] regularization. Using this mod-
from the far-end side is broadcasted in an acoustic enclosure (thefied correlation matrix can be interpreted as solving a regular-
room’) by means of a loudspeaker. A microphone is present in |zeq least squares problem (also known as ridge regression) in
the room for recording a local signalt) (the 'near-end sig- whlt_:h the squared norm of th_e unknown parameter vector (con-
nal’) which is to be transmitted back to the far-end side. An taining the RIR coefficients) is added to the least squares cost
acoustic echo path exists between the loudspeaker and the microfunction.  With exponential weighting this leads to the leaky
phone such that the recorded microphone sigiigll = z(t) + RLS algorithm [2], which is the Gauss-Newton counterpart to
v(t) contains an undesired echo componeft) in addition to ~ the more well-known leaky LMS algorithm [3]. Instead, we
the near-end signal componen(t). If the echo path transfer ~ Propose to regularize the cost function by adding the welghted
function is modelled as a finite impulse response (FIR) filter Squared norm of the unknown parameter vector. The optimal
F(g,t) 2 fo(t)+ f1(t)g~ +...+ fup(t)g~"F, then the echo welghtlng matrix in a mean square error (MSE) sense is given
component can be considered as a filtered version of the loud-PY linear estimation theory [4]. If the unknown parameter vec-
speaker signalz(t) = F(q,t)u(t). Hereq denotes the time OIS regar(_jedlas a rea_llzatlon ofa s_tochast_lc vector process, the
shift operator, e.gg~*u(t) = u(t — k). The main objective in opt_lmal welgh_tlng matrix for regularization is given by the co-
AEC is to identify the unknown room impulse response (RIR) Variance matrix of the vector process. This covariance matrix

F(g, t) and hence to subtract an estimate of the echo componentc@n be either constructed from prior knowledge on the RIR, or
estimated concurrently with the RIR.
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2. REGULARIZATION IN LEAST SQUARES
PARAMETER ESTIMATION

e The measurement noise inis drawn from a stationary
white noise process with zero mean and variarnce

£ Ev=0,

cov(v) = Evv’ = olL

®
©

e The true parameter vectdris considered as a random

Hy
Ry

The off-line identification of the RIR'(¢, t) can be considered
as a linear estimation problem with the RIR coefficients col-
lected in the parameter vectfir

4

y(1) u(1) u(l —nr) fo v(1) variable on which some prior knowledge may be avail-
. _ . . able. More specifically, let the prior probability density
: - : : i : ’ function (PDF)p(f) be characterized by its first and sec-
y(N) u(N) w(N —nr)| [fnp v(N) ond order moments:
or in matrix notation pe = Ef, (10)
R¢ 2 covf) = E(f - Ef)(f - Ef)". (11
Y Utav, " ‘ (F) = B(f ~ B~ BF). (11)

Then the linear MMSE estimator can be obtained as the mean of

the posterior PDip(f|y) after the data have been recorded [4]:

fvmse = E(fly) 12
=p+ (U'R,'U+R ) 'U'R, ' (y — Up).

We will construct the prior knowledge dhin such a way that

pe = 0. Then, also using the white noise assumption in (9), the
expression fofmmse can be rewritten as

An estimator forf may be obtained by minimizing the least
squares (LS) criterion
min Vi s(f) = min(y — Uf)" (y — Uf) )
f f

which results in the well-known LS estimator

(s = (U"U) 'U"y ] @3)

o . | (fmse = (UTU+ 2R ) 'U"y] (19)
When the input signak(¢) is not (or hardly) persistently excit-
ing, as is often the case when using audio signals, the matrix From this point of view, applying Tikhonov regularization as in

U”TU may be ill-conditioned or even singular. A common solu- (4) with« = o2 is equivalent to assuming that the true parameter

tion is to apply Tikhonov regularization [1] by adding a scaled vectorf is drawn from a stationary vector white noise process.

identity matrix toU” U:

(frers = (UTU + D)UYy )

In [5] it was shown that choosing the regularization parameter
« in the neighbourhood of the near-end background noise power
o2 has a beneficial influence whéiis identified recursively. We

will show below that:

e the estimator in (4) withh = o2 is optimal in a min-
imum mean square error (MMSE) sense if the near-end
background noise is drawn from a zero-mean stationary
white noise process with varianeé and if the unknown
parameter vectadf can be considered as a realization of a
zero-mean, unit-variance vector white noise process,

it may be convenient to replace the scaled unity maiiix
in (4) by a non-identity regularization matriX:

frers = (UTU+P) 'UTy. (5)

3. LINEAR MIMIMUM MEAN SQUARE ERROR
ESTIMATION

Let us derive an expression for the minimum mean square error
(MMSE) estimator of:

min Virarse (F) = min BE(F — £)7(f - £)
f

£

(6)

under the following assumptions:
e The estimator is a linear function of the datayin

@)

fvmse = 27y
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In room acoustics applications however, more information on the
true parameter may be available and an appropriate non-identity
covariance matriR¢ can be constructed.

4. GATHERING PRIOR KNOWLEDGE ON ROOM
ACOUSTICS

If an LS estimator with Tikhonov regularization is applied in
the AEC problem, the regularization mat# = oI (with the
regularization parameter chosenas= o2) looks as inFigure

2.

A room impulse response has a very typical form, which may be
characterized by three parameters, as illustratédgare 3:

e theinitial delay, which corresponds to the time needed
by the loudspeaker sound wave to reach the microphone
through a direct path (i.e. without reflections),

o the direct path attenuation, which determines the peak
response in the RIR, and

e theexponential decay rate, which models the reverberant
tail of the RIR.

These three parameters may be estimated from the acoustic setup
(distance between loudspeaker and microphone, acoustic absorp-
tion of the walls, room volume, etc.), e.g. using Sabine’s rever-
beration formulas [6]. Hence they can be considered as prior
knowledge. If these three parameters are taken into account, a
diagonal regularization matrix may be constructed that looks as
in Figure 4.

An idealized case, which is interesting as a reference method,
occurs when the true RIR is known. In this case a diagonal regu-
larization matrix may be constructed with the diagonal elements
equal to the inverse square values of the true parameter vector
coefficients, as illustrated iRigure 5.



Figure 5: Visualization of regularization matrix based on true
Figure 2: Visualization of traditional regularization matrix (hor- RIR (horizontal: matrix indices, vertical: matrix element value)
izontal: matrix indices, vertical: matrix element value)

5. OFF-LINE SIMULATION RESULTS

In a series of preliminary simulations, four different least squares
estimators were compared for the AEC application:

081 q

osf | \ 1 o the LS estimatofys without regularization,

\ exponential

04 \Jecay e the regularized LS estimatcﬁﬁgLs with Tikhonov regu-
larization: P = o1,

direct path attenuation

o the regularized LS estimatdirgr.s With regularization
based on the three RIR parameters described afidve:

2 —1
U'URf,synth’ and

o the regularized LS estimatdikgrs with regularization
based on the true RIF? = ¢2R ;!

f,true”
initial

067 | delay ] For each estimator, 100 simulation runs were performed with
‘ ‘ ‘ ‘ ‘ ‘ a different near-end noise realization (drawn from a stationary
002 004 % 008 ot 012 white noise process). The normalized distance between the re-
sulting estimates and the true RIKl, is plotted in a box-
plot to compare the bias and variance of the different estima-
Figure 3: Room impulse response characterized by three param+ors (seeFigures 6, 7, 8 and9). The data record length wa$
eters. times the parameter vector length. The average echo to near-end
noise ratio was set t@0dB. The sampling rate was equal to
fs = 8kH z. Two types of loudspeaker signals were used:

e asum ofnpr — 1 sinusoids with random frequencies, uni-
formly distributed in the interval between DC and the
Nyquist frequency, and

e a male speech signal.

Two types of acoustic impulse responses were measured in a
realistic situation and used in the simulation:

e a hearing aid impulse response with + 1 = 100 coef-
ficients, and

e a room impulse response withr + 1 = 1000 coeffi-
cients.

6. CONCLUSIONSAND FUTURE WORK

Figure 4: Visualization of regularization matrix based on 3 pa- o
rameters (horizontal: matrix indices, vertical: matrix element We have proposed to tackle the poor excitation problem occur-
value) ing in acoustic echo cancellation by adding a non-identity reg-

ularization matrix to the input correlation matrix. In this way a
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Figure 6: Boxplots for hearing aid impulse response and sum o
sinusoids input signal.
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Figure 7: Boxplots for hearing aid impulse response and speech

input signal.
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Figure 8: Boxplots for room impulse response and sum of sinu-

soids input signal.
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f Figure 9: Boxplots for room impulse response and speech input

signal.

low-variance estimate of the room impulse response can be ob-
tained which approaches the linear minimum mean square error
estimate, depending on the quality of the prior knowledge that is
available. We have proposed a three-parameter model to gather
prior knowledge on a room impulse response and to construct
a diagonal non-identity regularization matrix. Off-line simula-
tions show that for different types of loudspeaker signals and for
different acoustic scenarios, the proposed regularization method
yields a lower variance and a lower excess error than the unreg-
ularized and Tikhonov-like regularized estimators. Future work
will focus on developing recursive identification algorithms that
incorporate the proposed regularization technique, while avoid-
ing a dramatic increase in computational complexity.
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