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ABSTRACT

In this paper a model-based method for multi-microphone acous-
tic noise reduction is proposed. The model is able to handle
speech, correlated and uncorrelated noise components. These
are modelled using AR-processes. The components are parame-
terized by a combined procedure using Burg’s algorithm and a
modified autocorrelation method based on voice activity detec-
tion (VAD). Additionally, a spectral floor like scheme is applied
to suppress musical tones. This model is the basis of a multiple-
input single-output Kalman filter. It is implemented in a subband
structure by application of polyphase filterbanks. This procedure
reduces the model order of the AR-processes drastically without
violating the GSM delay boundary of 39 ms. Results show that a
significant level of noise reduction can be achieved while keep-
ing user signal degradation low.

1. INTRODUCTION

Acoustic noise reduction methods play an important role
in hands-free communication. In this paper we focus on the
problem of acoustic noise reduction for hands-free telephone use
inside a moving car. In this application, several approaches for
a single microphone exist. Only a few of these use the Kalman
filter algorithm. Newer methods utilizing more than one micro-
phone generally perform the noise reduction in two steps. First,
a beamformer is applied to the microphone outputs. Second, a
postfilter, very similar to the single-channel methods, mentioned
above is used to enhance the beamformer output. An overview
of existing methods – single-channel and multi-channel – can be
found in [1].

In this paper a signal model is developed for the multi-channel
case which combines beamformer and postfilter functionality
and can be used in a Kalman filter structure. This filter has been
implemented in a subband scheme using a polyphase filter bank.

This paper is organized as follows: In section 2 the signal model
is described which is the basis for the derivation of the Kalman
filter in section 3. After that, parametrization of the model is
addressed in section 4. Implementation issues and results are
presented in sections 5 and 6 respectively. The publication ends
with a conclusion and an outlook in section 7.

2. DESCRIPTION OF THE SIGNAL MODEL

In a multi-channel system, the microphone outputs can be di-
vided into two main components: speech and noise. The noise
can be further divided into noise that is correlated between the
microphone signals and noise that is not. Therefore, an appro-
priate model should be able to represent all three components,
i.e. speech, correlated noiseanduncorrelated noise.
Although the proportion of the two noise components depends
on the type and speed of the car as well as road conditions, it can
be generally stated that the uncorrelated component is dominant
over the correlated one. A diffuse noise field is modelled with
uncorrelated noise only.
From now on, we restrict ourselves toN = 2 microphones.
The signal model is shown in Fig. 1. It assumes a single speech
sources(k) (the speaker), which is modelled as AR-process of
orderp with excitationv(k). It is linked to the speech compo-
nents of the microphone signalsy1(k) andy2(k) via two time-
variant room impulse responsesh1,l(k) andh2,l(k). Note thatk
denotes the discrete time andl the coefficient index.
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Figure 1:Signal model.

The signalsn1(k) andn2(k) represent the uncorrelated noise
components at each microphone. They are again modelled as
AR-processes of orderq excited byw1(k) andw2(k) respec-
tively. These uncorrelated noise components of each microphone
are linked to the other channel via the time-variant impulse re-
sponsesg21,l(k) andg12,l(k) to model correlated noise compo-
nents in the microphone signals.
The impulse responsesh1,l(k), h2,l(k), g21,l(k) and g12,l(k)
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are time-variant. However, they have been denoted time-invariant
in Fig. 1 for clarity.
The excitation signalsv(k), w1(k) andw2(k) are independently
and identically distributed (iid) white noise processes that are
uncorrelated to each other. An AR-process of orderp with time-
varying coefficients is defined as follows:

x(k) =

pX
l=1

as,l(k − 1)x(k − 1) + u(k). (1)

In order to obtain a state-space description necessary for the
Kalman filter we apply Eq. 1 to our model and utilize ma-
trix/vector notation:

s(k) = As(k-1)s(k-1) + [ | ]v(k) (2)

n1(k) = An1(k-1)n1(k-1) + [ | ]w1(k) (3)

n2(k) = An2(k-1)n2(k-1) + [ | ]w2(k) (4)

where[ | ] represents a column vector of appropriate length (p or
q) with all elements zero except the last one which equals one.
Note that complex values are assumed due to the subband struc-
ture implementation. All vectors are defined as columns and are
denoted in lower case bold face letters while matrices are in up-
per case bold face. The following examples show the element
order of vectors representing a signal such ass(k) and an im-
pulse response such asg21(k) where the second index refers to
the coefficient:

s(k) = [s(k-p+1), s(k-p+2), . . . , s(k)]T

g21(k) = [g21,q-1(k), g21,q-2(k), . . . , g21,1(k)]T .

Each matrix is a combination of a shifting matrix and the AR-
coefficients [1]:

As(k)=

2666664 0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
as,p(k) as,p-1(k) as,p-2(k) · · · as,1(k)

3777775.
In the same manner the output of the model can be written in
matrix/vector notation:

y1(k) = h
H
1 (k)s(k)+ [ | ]Tn1(k)+g

H
21(k)n2(k) (5)

y2(k) = h
H
2 (k)s(k)+g

H
12(k)n1(k)+ [ | ]Tn2(k). (6)

The complete model in state-space notation is shown in Fig. 2
where scalar quantities are indicated by thin, vector quantities
by bold lines and where the time indexk has been omitted for
clarity.

3. KALMAN FILTER

In order to find the equations for the Kalman filter the model
described in section 2 needs to be combined into one system and
one measurement equation. Therefore, we rewrite Eqs. 2-4 as
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Figure 2:Signal model in state-space notation.

well as Eqs. 5-6 as one equation respectively:24 s(k)
n1(k)
n2(k)

35 =

24As(k) 0 0

0 An1(k) 0

0 0 An2(k)

35·24 s(k-1)
n1(k-1)
n2(k-1)

35· · ·
+

24[ | ] 0 0

0 [ | ] 0

0 0 [ | ]

35·24 v(k)
w1(k)
w2(k)

35�
y1(k)
y2(k)

�
=

�
hH

1 (k) [ | ]T gH
21(k)

hH
2 (k) gH

12(k) [ | ]T

�
·

24 s(k)
n1(k)
n2(k)

35 .

These equations can now be abbreviated:

x(k) = A(k − 1)x(k − 1) + Bu(k) (7)

y(k) = C
H(k)x(k) (8)

wherex(k) denotes the state vector,A(k) the transition matrix,
Bu(k) the system excitation,y(k) the measurement vector and
C(k) the measurement matrix. Eq. 7 is referred to assystem
equation, Eq. 8 asmeasurement equation.
The following Kalman filter equations are not derived in detail.
One can find detailed derivations in many textbooks, e.g. [1, 2].
Note that all estimates are linear, unbiased and optimal in terms
of the mean square error, i.e. there is no better linear estimate.

3.1. Kalman Equations

In the followingx̂(k|k− 1) is denotes the a-priori state estimate
and x̂(k|k) the a-posteriori state estimate.Pe(k|k − 1) and
Pe(k|k) denote the a-priori and a-posteriori covariance matrices
of the estimation error.

3.1.1. Prediction

x̂(k|k-1) = A(k − 1)x̂(k − 1|k − 1). (9)

Pe(k|k-1) = A(k − 1)Pe(k − 1|k − 1)AH(k) · · ·

+BPu(k)BT (10)
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3.1.2. Correction

K(k) = Pe(k|k − 1)C(k) · · ·

·
h
C

H(k)Pe(k|k − 1)C(k)
i
−1

(11)

x̂(k|k) = x̂(k|k − 1) · · ·

+K(k)
h
y(k)−C

H(k)x̂(k|k−1)
i

(12)

Pe(k|k) =
h
I − K(k)CH(k)

i
Pe(k|k − 1) (13)

Pu(k) denotes the matrix containing the variances ofv(k), w1(k)
andw2(k):

Pu(k) =

24 σ2

v(k) 0 0
0 σ2

w1(k) 0
0 0 σ2

w2(k)

35 (14)

4. ESTIMATION OF THE PARAMETERS

In the following section, parametrization of the signal model is
addressed and is divided into two subsections. The first deals
with the estimation of the AR-parameters while finding the im-
pulse responses is subject of the latter one.

4.1. AR-parameter estimation

Three sets of AR-parameters need to be estimated. One for the
speech component and one for the noise component of each mi-
crophone. As well as the AR-coefficients, the excitation power
or - more precisely - the covariance matrix of the excitation vec-
tor u(k) needs to be estimated.

4.1.1. Finding the AR-coefficients

The difficulty with estimating the AR-coefficients is due to the
fact that the speech signal is always disturbed by noise. In speech
pauses however, the noise itself can be measured directly.
Following the approach in [3] a combination of Burg’s and a
modified autocorrelation method with VAD is utilized to over-
come the deficiencies of each method (see section 6). This struc-
ture is further improved by a spectral-floor like technique.
The input data at every microphone is processed in overlapping
blocks. Each block is processed twice. First, they are used for
the Burg estimator yielding a first set of speech AR-coefficients
for each microphone. The sets from the two microphones are
averaged to yield an improved estimate.
Second, they are utilized to calculate the periodogramŜyy(n)
which is an estimate of the power spectral density (PSD) of
the measurement. Depending on the VAD, the PSD is recur-
sively smoothed and used as a noise PSD estimateŜnn(n) dur-
ing speech pauses. During speech activity however,Ŝnn(n) is
kept constant and the speech PSD is estimated by subtracting
Ŝnn(n) from Ŝyy(n). In order to prevent unstable AR-models,
negative values will be forced to zero. However, this causes au-
dible musical tones and consequently a spectral floor like scheme
is introduced to combat those effects:

Ŝss(n) = max{Ŝyy(n) − Ŝnn(n), 0} (15)

Ŝ
floor
ss (n) = max{Ŝss(n), γ · max{Ŝss(n)}} (16)

The factorγ ∈ [0; 1] is used to adjust the spectral floor increas-
ing the noise level at the output and masking the musical tones.
Finally, the second set of speech AR-coefficients for each mi-
crophone is calculated by applying the inverse FFT toŜfloor

ss (n).
Again, the estimation is improved by averaging the two sets over
the different microphones. The improved sets from Burg’s and
the autocorrelation method are then linearly combined.
The noise AR-coefficients are calculated by applying the inverse
FFT toŜnn(n) at every microphone.

4.1.2. Finding the excitation power

By calculating the predictor error power, the excitation power of
the AR-models can be estimated as shown in the following for
the speech component:

σ
2

v(k) = rss,0(k) + a
H
s (k)Rss(k)as(k) · · ·

−2 · Re

(
pX

l=1

a
∗

s,l(k)rss,l(k)

)
(17)

whererss,l(k) is the autocorrelation sequence at time instance
k, Rss(k) the autocorrelation matrix andas(k) the vector of the
AR-coefficientsas,l(k).

4.2. Estimation of the impulse responses

The impulse responsesh1,l(k) andh2,l(k) can be used to com-
pensate for a direction of arrival (DOA) other than broadside e.g.
by usage of a fractional delay filter [4]. Additionally, it can be
used to reverse the effects of reverberation, which is the subject
of further research.
The impulse responsesg21,l(k) andg12,l(k) model the corre-
lated noise components. Settingg21,l(k) = g12,l(k) = 0 de-
scribes an uncorrelated noise field. However, having VAD avail-
able provides an easy way to enhance the model by applying
two adaptive filters between the channels and in opposite direc-
tions, which adaptg21,l(k) andg12,l(k) during speech pauses.
Another possibility is the utilization of a linear predictor in a
similar way. Then,g21,l(k) andg12,l(k) represent the predictor
coefficients instead of impulse responses.

5. IMPLEMENTATION

The system described in the previous sections has been imple-
mented in a subband structure using polyphase filterbanks. A
time-domain implementation is impractical due to the high model
order (approximately 60) that would be required for the speech
component [3]. Performing the Kalman filtering in subbands
provides the advantage of using different model orders at differ-
ent frequency bands to accommodate for the fact that speech and
noise power decreases over frequency.
Specifically, aM = 16 bands polyphase filterbank with a length
L = 64 prototype lowpass filter and subsampling rate ofr = 10
was used. With data sampled atfs = 8 kHz the lowpass causes
a delay of 8 ms.
As the input signals are real valued, usage of the first nine bands
is sufficient due to symmetry reasons. Initially, the model order
for the speech component was set top = 6 while usingq = 2
coefficients for the noise components at the same time. The pa-
rameter estimation was performed for subband sample with a
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block of length 32 and the sample to be calculated in its mid-
dle. By using those non-causal samples of half a block length
an additional delay of 20 ms is introduced. Therefore, the sys-
tem causes a total delay of 28 ms. Even withr = 12, which is
the maximum subsampling rate one should use with a prototype
lowpass of that length, the total delay becomes 32 ms. This is
still less than the 39 ms required by ETSI for GSM [5].
As the DOA was broadside for the speech component,h1(k) and
h2(k) were seth1(k) = h2(k) = δK(k).

6. RESULTS

For the simulations, plain speech signals were convolved with
room impulse responses measured inside a car and then added to
recorded car noise. As an example, the spectrogram of the noisy
speech signal of microphone one is depicted in Fig. 3.
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Figure 3:Spectrogram of the noisy speech signal.

If the linear combination of the two sets of AR-coefficients is
performed in the way that only the autocorrelation method is
used, the maximum noise reduction is achieved. However, the
speech signal is degraded and the speech quality is poor.
Using Burg’s method alone, i.e. utilizing the autocorrelation
method only for noise AR-parameter estimation, results in good
speech quality but less noise reduction. Therefore, various mix-
tures of the AR-coefficient sets estimated with Burg’s method
and the autocorrelation method were tested. Best results are ob-
tained by using a mixture of approximately 70% autocorrelation
and 30% Burg’s method.
The remaining musical tones can be traded against noise reduc-
tion performance by application of a spectral floor setting of
γ = 0.05. Then, the increased noise level masks most of the
musical tones providing a good speech quality.
Finally, model estimation was improved by adaptation ofg21,l(k)
andg12,l(k) via the NLMS algorithm with small step sizes such
asµ = 0.01. First results are shown in Fig. 4 where an SNR
gain of approximately 6 dB was achieved.
Using a subsampling rate ofr = 12 and less AR-coefficients at
higher frequency band as well as estimating the AR-coefficients
not every subband sample but every five samples was already
examined in the single-channel case. Those former results in-
dicate that the computational complexity can be drastically re-
duced without significant loss in performance.
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Figure 4:Spectrogram after noise reduction using the combined
method and spectral floor resulting in an SNR gain of 6 dB.

7. CONCLUSION

A new AR-process based model, which represents speech, cor-
related and uncorrelated noise components and in which DOA
compensation and de-reverberation techniques can be easily in-
tegrated, was introduced. It was shown, that the model can
be described in the state-space domain making it suitable for a
multiple-input single-output Kalman filter implementation. Two
methods providing stable AR-models – Burg’s method and the
autocorrelation method – were presented for estimating the AR-
coefficients of speech and noise from a noisy speech signal. Ad-
ditionally, a method similar to the spectral floor in the single-
channel case was applied to combat musical tones. The sys-
tem was implemented in a subband structure in order to handle
the necessary order of the AR-processes. The input signal was
decomposed into 16 subbands using a polyphase analysis filter-
bank with a prototype lowpass filter of length 64 subsampling
rate 10. After performing the Kalman filtering the output sig-
nal was formed by the corresponding polyphase synthesis filter-
bank. Results showed that the autocorrelation method yields bet-
ter noise reduction compared to Burg’s method but also a poor
speech quality. Burg’s method behaves almost contrarily, pro-
viding good speech quality with less noise reduction. Combining
both methods together with the spectral floor scheme to suppress
the remaining musical tones provided the best results.

8. REFERENCES
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