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ABSTRACT

In this paper we propose a novel adaptation algorithm for Filter-
and-Sum beamforming in spatially correlated noise. Determin-
istic and stochastic gradient ascent algorithms are derived from a
constrained optimization problem, which iteratively estimate the
principal eigenvector of a generalized eigenvalue problem. The
method does not require an explicit estimation of the speaker
location. It is shown that the well-known Delay-and-Sum beam-
former and the previously introduced Filter-and-Sum beamformer
in spatially white noise are obtained as special cases. Further,
bounds on the maximally achievable SNR gains are derived and
it is shown that the proposed adaptation algorithm is able to ap-
proach these performance bounds.

1. INTRODUCTION

Microphone arrays are often employed for hands-free speech
communication or recognition. With multi-channel signal pro-
cessing a beam of increased sensitivity is directed towards a pos-
sibly moving speaker, whose position is not known a priori.
A popular solution is the use of a Delay-and-Sum (DSB) beam-
former, which compensates propagation path length differences
of the direct (”line-of-sight”) path from the source to each sen-
sor, to obtain a properly aligned direct path signal at the out-
put. However, there are various shortcomings of this approach:
First, source localization techniques are required to estimate the
speaker position or at least the direction-of-arrival (DOA), which
are problematic on their own right in reverberant environments
[1]. Further, the position of the microphones has to be exactly
known to correctly transform DOA-estimates into time delays in
each microphone path. Since the DSB aligns only the direct path
signal, it does not take into account reflections, and the effect of
spatially correlated noise is not addressed.
Recently we have proposed an adaptive Filter-and-Sum beam-
former (FSB) which overcomes many of the shortcomings of the
DSB [2]: The adaptation works blindly, i.e. no explicit source
localization is required. Further, the beamformer explicitly ad-
dresses reverberant environments by aligning the direct path sig-
nal and, in addition, early reflections. The FSB adaptation algo-
rithm has been derived from a constraint optimization problem,
the solution of which is the principal eigenvector of the cross
power spectral density matrix of the microphone signals. De-
terministic and stochastic gradient ascent algorithms have been
derived assuming spatially white noise. Simulations have re-
vealed high robustness of the scheme to fast changes of speaker
position.
The purpose of this paper is to extend our previous work to the
practically more realistic case of spatially correlated noise. An

algorithm is derived to adaptively estimate the principal eigen-
vector of a generalized eigenvalue problem. Further, it is shown
that the FSB reduces to a DSB if certain simplifying assump-
tions are made about the acoustic environment. We derive per-
formance bounds and show that the proposed adaptation scheme
comes close to these bounds.

2. SIGNAL MODEL

We are given an array of M microphones. Each microphone
signal xi(n), i = 1, . . . , M , where n denotes the discrete-time
index, is assumed to consist of two components: A signal com-
ponent si(n), which results from the convolution of the desired
(speech) source signal u(n) with the room impulse response
hi(n) from the source position to the i-th sensor, and the noise
term ni(n):

xi(n) = si(n) + ni(n)

= hi(n) ∗ u(n) + ni(n); i = 1, . . . , M. (1)

The goal of beamforming is to obtain an estimate of u(n) by
filtering and then summing the microphone signals:

y(n) =

M
X

i=1

f̃i(n) ∗ xi(n). (2)

Here, f̃i(n) = fi(−n) is the impulse response of the filter of
the i-th microphone signal.
The filtering operation is preferably done in the frequency do-
main employing a Discrete Fourier Transform:

Y (k) =
M

X

i=1

F ∗

i (k) · Xi(k) =
M

X

i=1

F ∗

i (k) · (Si(k) + Ni(k)).

(3)
Here, k denotes the frequency bin: k = 0, . . . , L − 1 (L: DFT-
length). The frame index has been omitted for ease of notation.
F ∗

i (k), Xi(k), Si(k), and Ni(k) are the DFTs of f̃i(n), xi(n),
si(n), and ni(n), respectively. In the following we will use
the vector notation, i.e. X(k) = (X1(k), . . . , XM (k))T and
F(k) = (F1(k), . . . , FM (k))T , such that (3) can be written as:

Y (k) = F
H(k) · X(k); k = 0, . . . , L − 1, (4)

where (·)H denotes Hermitian transpose.
There are different options for f̃i(n): In the case of a Delay-and-
Sum Beamformer (DSB) the filter is a discrete-time interpolator
to realize integer or fractional delays. The delays are chosen to
compensate for the path length differences of the direct (”line-
of-sight”) propagation path from the source to the individual sen-
sors.
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In this paper we consider the more general case of a Filter-and-
Sum Beamformer (FSB), where f̃i(n) is an arbitrary FIR filter.
The filter coefficients are chosen such, that in addition to the
line-of-sight signal component, also early reflections are aligned
in order to add constructively at the output of the beamformer.
In the next section we show how optimal FSB coefficients can
be obtained.

3. OPTIMAL FSB

3.1. Constrained Optimization Problem

If the desired signal si(n) and the noise ni(n) are uncorrelated
the power spectral density (PSD) of the FSB output can be writ-
ten as

ΦY Y (k) = F
H(k)ΦXX(k)F(k) (5)

= F
H(k)ΦSS(k)F(k) + F

H(k)ΦNN(k)F(k),

where ΦXX(k), ΦSS(k) and ΦNN(k) are the cross power spec-
tral density matrices of the microphone signals, the speech and
noise terms, respectively.
Our goal is to determine a vector of filter coefficients F(k) such
that the Signal-to-Noise ratio

SNR(k) =
F

H(k)ΦXX(k)F(k)

FH(k)ΦNN(k)F(k)
− 1 (6)

of the output signal Y (k) is maximized.
In light of eq. (6), maximizing the SNR of the beamformer out-
put is then equivalent to the following constrained optimization
problem:

max
FH (k)

F
H(k)ΦXX(k)F(k) subj. to F

H(k)ΦNN(k)F(k) = C,

(7)
where C ∈ IR is an arbitrary real constant, which is set to C = 1
in the following.
Introducing a Lagrange multiplier β we arrive at the optimiza-
tion function

J(F, β) = F
H(k)ΦXX(k)F(k)+β(FH(k)ΦNN(k)F(k)−1).

(8)
Computing the gradient ∇F J(F, β) w.r.t. F and setting it to
zero results in

∇F J(F, β) = 2ΦXX(k)F(k) + 2βΦNN(k)F(k) = 0, (9)

which demonstrates that the optimal filter coefficient vector is an
eigenvector of a generalized eigenvalue decomposition, a well-
known result in the array processing literature. It is also well-
known that other optimization criteria, e.g. MMSE, ML or MVDR
result in a weight vector F

′(k) which is the same as the above
weight vector, up to a scalar constant [3]:

F
′(k) = w(k)F(k). (10)

Thus any optimization criterion can be realized by an FSB with
filter coefficients as derived above and a single-channel post-
filter, which implements w(k).

3.2. Adaptation Algorithm

To iteratively solve eq. (9) we developed a deterministic gradient
ascent scheme:

F(κ + 1) = F(κ) +
µ

2
∇FJ(F, β)

?

?

?

?

F=F(κ)

, (11)

where κ counts the iterations, and µ is the step size parameter.
The Lagrange multiplier β is computed by postulating that the
constraint is to be met at the next iteration step:

F
H(κ + 1)ΦNNF(κ + 1)

!
= C. (12)

Using (11) in (12), neglecting terms of order O(µ2) and solving
for β we obtain

β ≈
C − F

H(κ)ΦNNF(κ) − µF
H(κ)Φ(XN)

F(κ)

2µFH(κ)ΦNNΦNNF(κ)
, (13)

where
Φ

(XN) = ΦXXΦNN + ΦNNΦXX. (14)

Using this in (11) we obtain the following deterministic gradient
ascent algorithm for solving the GEVD:

F(κ + 1) = F(κ) +
C − F

H(κ)ΦNNF(κ)

2FH(κ)ΦNNΦNNF(κ)
ΦNNF(κ)

+ µ

»

ΦXXF(κ) −
F

H(κ)Φ(XN)
F(κ)

2FH(κ)ΦNNΦNNF(κ)
ΦNNF(κ)

–

.

(15)

Since the cross power spectral density matrices are not known
in practice, a stochastic gradient ascent algorithm is used by ap-
proximating:

φXX ≈ X(m)XH(m), (16)

where m denotes the frame index. The cross power spectral den-
sity matrix of the noise is also not known a priori. It can be
replaced by an estimate, which we obtain at the sensors during
speech pauses

ΦNN ≈ Φ̂NN(m) = ε · Φ̂NN(m − 1)

+ (1 − ε) · X(m)XH(m)
˛

˛

˛

X(m)=N(m)

(17)

with some smoothing constant ε, 0 < ε < 1.
Using (16) and (17) in (15) we obtain the stochastic version of
the iterative generalized eigenvalue decomposition:

F(m + 1) = F(m) +
1 −F

H(m)G(m)

2GH (m)G(m)
G(m)

+ µY ∗(m)

»

X(m) −
G(m)A(m)

2GH (m)G(m)

– (18)

where

G(m) = Φ̂NN(m)F(m),

A(m) = Y (m)/Y ∗(m)XH(m)G(m) + G
H(m)X(m).

In the special case of spatially white noise, see eq. (24) later on,
(18) reduces to the adaptation rule presented in [2].
In this section we omitted the frequency bin index k. However it
has to be kept in mind that the aforementioned iterations have to
be carried out for every frequency bin separately.
A convergence and stability analysis showed that the rule is very
robust to speaker movements. The step size parameter must be
chosen from the interval 0 < µ < 2/λmax to ensure stability
[5].
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4. PERFORMANCE BOUNDS

We have seen in Section 3.1 that the vector of optimal filter coef-
ficients is the principal eigenvector of the generalized eigenvalue
problem (9). Here we consider special cases where the eigenvec-
tor and corresponding eigenvalue can be easily computed.

4.1. FSB and DSB

Computing the DFT of (1) the vector of microphone signals can
be written as

X(k) = H(k)U(k) + N(k). (19)

Here, U(k) is the DFT of u(n). In the following we assume for
convenience: |U(k)|2 = 1.
The power spectral density matrix of the sensor signals is given
by

ΦXX = HH
H + ΦNN (20)

where we have omitted the frequency index k for ease of nota-
tion. Since H

H
Φ

−1
NNH is a scalar, the following holds

Φ
−1
NN

“

HH
H + ΦNN

”

Φ
−1
NNH =

“

H
H
Φ

−1
NNH + 1

”

Φ
−1
NNH.

(21)
Obviously, Φ−1

NNH is an generalized eigenvector of Φ−1
NNΦXX =

Φ
−1
NN(HH

H + ΦNN) with eigenvalue (HH
Φ

−1
NNH + 1).

If we assume that the source is in the far field of a uniform linear
microphone array, then the time which a plane wave, arriving
from a source in direction θ relative to broadside, takes to travel
from the first sensor to the i-th is easily computed as

τi(θ) =
d

c
(i − 1) sin θ, (22)

where d denotes the inter-element spacing and c is the propa-
gation velocity. In the absence of reverberation the vector of
transfer functions has the form

H(k) = (1 e−jωkτ2(θ), . . . , e−jωkτM (θ))T . (23)

Here, ωk = 2πk/(LT ) is the frequency variable (T : sampling
period).
In the case of spatially uncorrelated noise we further have

ΦNN(k) = σ2
N (k) · IM , (24)

where IM is the identity matrix of dimension M × M , and
σ2

N1
(k) = · · · = σ2

NM
(k) = σ2

N (k) is the variance of the
noise term at a microphone, which is assumed to be equal for all
microphones, but which can depend on the frequency index.
As a result, Φ

−1
NNΦXX has only one eigenvector with eigen-

value larger than zero, and this eigenvector is equal to H(k).
Therefore the optimal beamformer weights are F(k) = H(k).
But these are exactly the weights of a Delay-and-Sum beam-
former. We conclude that optimization of an FSB in the case of
a source in the far-field, absence of reverberation and spatially
white noise leads to the DSB solution.

4.2. SNR Gain

Next we compute the signal-to-noise ratio at the beamformer
output, if the optimal filter coefficients are used.
From (6) and (9) we obtain

SNR(k) =
F

H(k)λmaxΦNN(k)F(k)

FH(k)ΦNN(k)F(k)
− 1 (25)

= λmax − 1 = λ̃max. (26)

Where λmax is the largest eigenvalue of Φ
−1
NNΦXX, and λ̃max

is the largest eigenvalue of Φ
−1
NNΦSS. The maximally achiev-

able SNR gain, which is realized if the filter coefficients are
equal to the principal eigenvector, is given by the largest eigen-
value of the generalized eigenvalue problem!
From (21) we obtain (21)

SNR(k) = H
H(k)Φ−1

NN(k)H(k) (27)

In the special case of the far-field assumption, no reverberation
and spatially uncorrelated noise we arrive at

SNR(k) =
H

H(k)H(k)

σ2
N (k)

=
M

σ2
N (k)

, (28)

i.e. the SNR gain, which is the ratio of the SNR at the beam-
former output to the SNR at the sensors and for spatially uncor-
related noise given by 10 log10(M) dB.
Another interesting case is diffuse noise. In this case the entry in
the i-th row and j-th column of ΦNN is given by

{ΦNN}
i,j

= σ2
NΓi,j , (29)

with

Γi,j = si

„

ωkdij

c

«

, (30)

where si(x) = sin(x)/x. Here dij = |i − j|d is the distance
between the i-th and j-th sensor. Noise in the passenger cabin of
a car can be well characterized as diffuse noise [4].

5. EXPERIMENTAL RESULTS

In the following experiments we are going to compare the perfor-
mance of the adaptive FSB of the last section with the theoretical
maximal achievable SNR gains under different reverberation and
noise scenarios.
Figure 1 shows the SNR-gain obtained by the adaptive FSB as a
function of room reverberation time RT60 in a spatially uncorre-
lated noise environment for different SNR values at the sensors.
We used a 4-channel linear microphone array with a spacing of
5 cm at a sampling rate of 8 kHz and the speech source was posi-
tioned at 30 degrees relative to broadside. The FSB-filterlength
was set to 64 and the DFT-length was 128. If it is known in ad-
vance that the noise is spatially uncorrelated, i.e. that (24) holds,
eq. (18) can be considerably simplified [2]. However, here we
used (18), where the cross power spectral density of the noise
was estimated during speech pauses. The results demonstrate
that the noise cross power spectral density matrix could be effi-
ciently estimated during speech pauses. It can be seen that the
adaptive FSB is able to achieve almost the complete maximally
achievable SNR gain of 6 dB, both for an input SNR of 15 dB
and 5 dB at the microphones.
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Figure 1: SNR gain achieved by the adaptive FSB as a function
of room reverberation time RT60 (spatially uncorrelated noise).

In another set of experiments diffuse noise and absence of re-
verberation was considered. Note that the matrix (29) is singu-
lar for ωk = 0. A regularisation term was therefore included,
i.e. ΦNN(k) was replaced by ΦNN(k) + δIM . Assuming ab-
sence of reverberation the maximally achievable SNR gain as a
function of frequency is displayed in Fig. 2 for different val-
ues of δ. Note, that the SNR gain also depends on the DOA
θ, which is not surprising since H has the form given in (23).
In order to assess the performance of the adaptive FSB, diffuse
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Figure 2: Maximally achievable SNR gain in diffuse noise as a
function of frequency for different values of the regularization
parameter δ and with DOA θ = 58◦.

noise was simulated by placing two computer fans in a reverber-
ant room without direct path to the microphones. Fig. 3 com-
pares the measured coherence functions with that of an ideally
diffuse noise field. The microphone signals were then computed
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Figure 3: Coherence function of the ideally diffuse sound field
(solid) and measured coherence (dotted) for microphone dis-
tance d = 5cm in (a) and d = 10cm in (b).

using the well-known image method. Fig. 4 shows the SNR
gain obtained by the adaptive FSB and the SNR gain obtained
by a ”perfect” DSB, where the DOA is assumed to be perfectly
known. Whereas a DSB can obtain at most 10 log10(M) dB
gain, the FSB achieves much higher gains at low frequencies,
which is very desirable in a car environment.

Finaly Fig. 5 shows the SNR gain over the reverberation time
RT60 achieved by the proposed FSB compared to a DSB for an
SNR of about 5dB at the microphones and θ = 58◦.
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Figure 4: SNR gain achieved by the adaptive FSB and DSB as a
function of frequency in a diffuse noise environment.
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Figure 5: SNR gain achieved by the adaptive FSB and the DSB
as a function of room reverberation time RT60 (diffuse noise).

6. CONCLUSIONS

In this paper we have presented an adaptive Filter-and-Sum (FSB)
beamformer which is able to achieve close to the theoretically
maximum SNR gain both in spatially correlated and uncorre-
lated noise, be it a reverberant or a non-reverberant environment.
The well-known Delay-and-Sum (DSB) beamformer is obtained
as a special case of the FSB, if absence of reverberation and spa-
tially white noise is assumed. For the practically very relevant
case of spatially correlated noise, the proposed FSB achieves
considerably larger SNR gains than a conventional DSB.
Note that the proposed FSB can be used as a steering component
of a broadband beamformer such as the Generalized Sidelobe
Canceller [6], where a blocking matrix and adaptive interference
cancellers are used to supress directional noise. Investigations of
this setup are currently underway.
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