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ABSTRACT
We propose a new method for separating sparse signals from
their mixtures. Separation is achieved by clustering the normal-
ized observation vectors and extracting each cluster as each sep-
arated signal. We show the practical result of speech separation
with non-linear sensor arrangements in both a determined and an
underdetermined scenarios. We also consider the musical noise
problem and show the listening test results.

1. INTRODUCTION

In this paper, we consider the blind source separation (BSS)
of speech signals observed in a real environment, i.e., the
BSS of convolutive mixtures of speech. Recently, inde-
pendent component analysis (ICA) [1] has been widely
studied for such a BSS problem. However, ICA cannot be
applied when N > M . In contrast, we propose a method
that can handle both a (over-)determined (N ≤ M ) and
an underdetermined (N > M ) cases.
Let us formulate the task. Suppose that sources s1, . . . , sN

are convolutively mixed and observed at M sensors

xj(t) =
∑N

k=1

∑

l hjk(l) sk(t− l), j =1, . . . , M, (1)

where hjk(l) represents the impulse response from source
k to sensor j. Here we assume that sources sk are sparse
signals, i.e., they have super-Gaussian distributions. For
instance this is true for speech signals. The goal is to ob-
tain the separated signals yk(t) that are estimations of sk

only from the M observations.
There are several approaches [2, 3, 4] that rely on the
sparseness of the source signals. If the signals are suffi-
ciently sparse, we can assume that the sources rarely exist
simultaneously. Therefore, we can estimate each source
by gathering the observation samples that appear to be-
long to one of the sources. Previously, this was done
by using geometric information (e.g., direction of arrival
(DOA) and/or distance) about the sources, which is esti-
mated by the phase and/or level difference between two
observations of a linear sensor array [2, 5]. However, it is
difficult to expand those methods for M ≥ 3. That is, even
if we have M ≥ 3 microphones, the previous methods
cannot utilize all the observation information effectively
and straightforwardly. In addition, the previous methods
needed an exact sensor arrangement and sensor calibra-
tion to estimate the geometric features of the sources ac-
curately.

In this paper, we propose a new method for separating
sparse signals from their mixtures. First we normalize
all the observations and cluster the normalized observa-
tion vectors (see Eq. (5)). Then, we design time-frequency
binary masks using the clustering result and estimate the
separated signals with the masks. With this approach, we
can exploit the information obtained from all the sensors.
Moreover, we do not need to know the exact sensor loca-
tions, simply the maximum distance between a given sen-
sor and any other sensor. This relaxation makes it easy to
use a non-uniform arrangement of sensors, and also elim-
inates the need for sensor calibration. We show the ex-
perimental results obtained in a room (reverberation time
of 130 ms) with non-linear sensor arrays in both a deter-
mined and an underdetermined scenarios.
Previously, we have applied the normalization and cluster-
ing techniques to the basis vectors produced by ICA [6] in
order to overcome the permutation problem that we face
in frequency domain ICA. In contrast, in this paper, we
normalize and cluster the observation vectors themselves
and separate the signals directly.
We also consider the musical noise problem, which usu-
ally occurs when we use a time-frequency binary mask.
We confirm that our reported fine-shift and overlap-add
method [7] is also applicable to our observation vector
clustering method to reduce musical noise.

2. PROPOSED APPROACH

2.1. Frequency domain operation

Figure 1 shows the flow of our method. First, time-domain
signals xj(t) sampled at frequency fs are converted into
frequency-domain time-series signals xj(f, τ) with an L-
point short-time Fourier transform (STFT):

xj(f, τ)←
∑L/2−1

r=−L/2
xj(τ + r) win(r) e−2πfr, (2)

where f ∈ {0, 1

Lfs, . . . , L−1

L fs} is a frequency, win(r)
is a window that tapers smoothly to zero at each end, such
as a Hanning window 1

2
(1+cos 2πr

L ), and τ is a new index
representing time.
The remaining operations are performed in the frequency
domain. There are two advantages to this. First, convo-
lutive mixtures (1) can be approximated as instantaneous
mixtures at each frequency:

xj(f, τ) ≈
∑N

k=1
hjk(f)sk(f, τ), (3)
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Figure 1: Flow of proposed method

where hjk(f) is the frequency response from source k to
sensor j, and sk(f, τ) is a frequency-domain time-series
signal of sk(t) obtained by the same operation as (2). The
second advantage is that the sparseness of a source sig-
nal becomes prominent in the time-frequency domain if
the source is colored and non-stationary such as speech.
The possibility of sk(f, τ) being close to zero is much
higher than that of sk(t). When the signals are sufficiently
sparse in the time-frequency domain, we can assume that
the sources rarely overlap and (3) can be approximated as

xj(f, τ) ≈ hjk(f)sk(f, τ), k ∈ {1, · · · , N}, (4)

where sk(f, τ) is a dominant source at the time-frequency
point (f, τ). We estimate which source is dominant at
each time-frequency point (f, τ) by using the procedures
described in the following subsection.

2.2. Separation procedures

Let us have a vector notation of the mixing model (3) :

x(f, τ) ≈
∑N

k=1
hk(f)sk(f, τ), (5)

where x = [x1, . . . , xM ]T is an observation vector and
hk = [h1k, . . . , hMk]T is the vector of the frequency re-
sponses from source sk to all sensors.

2.2.1. Normalization

The new method involves normalizing all observation vec-
tors x(f, τ), j = 1, . . . , M , for all frequency bins f =
0, 1

Lfs, . . . , L−1

L fs such that they form clusters, each of
which corresponds to an individual source. The normal-
ization is performed by selecting a reference sensor J and
calculating

x̄j(f, τ)← |xj(f, τ)| exp

[


arg[xj(f, τ)/xJ (f, τ)]

4fc−1dmax

]

(6)

where c is the propagation velocity and dmax is the maxi-
mum distance between the reference sensor J and a sensor
∀j ∈ {1, . . . , M}. Then, we apply unit-norm normaliza-
tion

x̄(f, τ) ← x̄(f, τ) / ||x̄(f, τ)|| (7)

for x̄(f, τ) = [x̄1(f, τ), . . . , x̄M (f, τ)]T . By this normal-
ization, x̄(f, τ) becomes independent of frequency, and
dependent only on the positions of the sources and sen-
sors. That is, the observation vectors are clustered based
on the source geometry. The rationale for this is explained
in the Appendix.

2.2.2. Clustering

The next step is to find clusters C1, . . . , CM formed by
normalized vectors x̄(f, τ). The centroid ck of a cluster
Ck is calculated by

ck ←
∑

x̄∈Ck
x̄/|Ck|, ck ← ck/||ck||,

where |Ck| is the number of vectors in Ck. Each clus-
ter corresponds to an individual source. The clustering
criterion is to minimize the total sum J of the squared
distances between cluster members and their centroid

J =
∑M

k=1
Jk, Jk =

∑

x̄∈Ck
||x̄− ck||

2. (8)

This minimization can be performed efficiently with the
k-means clustering algorithm [8].

2.2.3. Reconstruction of each separated signal

Finally, we design a time-frequency binary mask that ex-
tracts the time-frequency points in one of the clusters

Mk(f, τ) =

{

1 x̄(f, τ) ∈ Ck

0 otherwise (9)

and obtain the separated signals yk(f, τ) by

yk(f, τ) = Mk(f, τ)xJ′ (f, τ)

where J ′ ∈ {1, · · · , M} is a selected sensor index.
At the end of the flow, we have outputs yk(t) by an inverse
STFT (ISTFT):

yk(τ + r)←
1

L·win(r)

∑

f∈{0, 1

L
fs, ..., L−1

L
fs}

yk(f, τ) e 2πfr.

(10)

3. EXPERIMENTS

3.1. Experimental conditions

We performed experiments to verify that our method can
separate signals mixed in a reverberant condition. We
measured impulse responses hjk(l) under the conditions
shown in Figs. 2 and 4. Mixtures were made by convolv-
ing the impulse responses and 5-second English speeches.
The reverberation time of the room was RT60 =130 ms.
The sampling rate was 8 kHz. The frame size L for STFT
was 512, and we changed the frame shift from 64(= L/8)
to 256(= L/2) to observe its effect on musical noise.
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Figure 2: Room setup for primary experiment

3.2. Performance measures

The separation performance was evaluated in terms of the
improvement in the signal-to-interference ratio (SIR) for
each output i. This improvement was calculated by
OutputSIRi − InputSIRi, where

InputSIRi = 10 log
10

〈|xJ′i(t)|
2〉t

〈|
∑

k 6=i xJ′k(t)|2〉t
(dB), (11)

OutputSIRi = 10 log
10

〈|yii(t)|
2〉t

〈|
∑

k 6=i yik(t)|2〉t
(dB), (12)

where xJ′k(t) =
∑

l hJ′k(l) sk(t − l) and yik(t) is the
component of sk that appears at output yi(t): yi(t) =
∑N

k=1
yik(t). Moreover, we used the signal to distortion

ratio (SDR) as a measure of sound quality:

SDRi = 10 log
10

〈|xJ′i(t)|
2〉t

〈|xJ′i(t)− αyii(t−D)|2〉t
(dB), (13)

where α and D are parameters used to compensate for the
amplitude and phase difference between xJ′i and yii.
To evaluate the musical noise, we also conducted a sub-
jective test and obtained the mean opinion score (MOS).
The listening tests were undertaken by 10 listeners. Each
listener awarded a score from one (musical noise is clearly
audible) to five (not audible) for each output signal.

3.3. Results

Figure 3 shows an example clustering result for normal-
ized observation vectors when N = 3 and M = 2 (Fig. 2)
at two frequencies. Each point shows the squared distance
||x̄ − c1||

2 between normalized vectors x̄ and one of the
centroids c1. We can see that the clustering was accom-
plished successfully using our clustering method. More-
over, it can be seen that the clustering is independent of
frequency. As expected, the SIR improvement was almost
the same (around 12 dB on average) with both our pro-
posed method and the previous DOAs-based method, be-
cause we have only two elements and all sources were at
equal distances from the microphones.
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Figure 3: Example clustering result (N = 3, M = 2). o,
+, * show the cluster members C1, C2 and C3, respec-
tively.

Table 1 shows the separation result for four sources with
three sensors (N = 4, M = 3, underdetermined), that
were arranged non-linearly (Fig. 4 [Setup 1]). We investi-
gated four combinations of speakers and averaged the re-
sults. From Table 1, we can see that our proposed method
achieved good separation performance even if we utilized
the non-linear sensor arrangement. In such a non-linear
case, the conventional DOA-based method cannot be ap-
plied straightforwardly. The applicability to a non-linear
sensor array is one of the advantages of our method.

Table 1 also shows the SIR, SDR and MOS values when
we changed the frame shift from 256(= L/2) to 64(=
L/8). By using the fine-shift (L/4 and L/8), the SDR
and MOS values increase without any reduction in the SIR
values. The MOS was significantly different for each shift
rate (the significant level was .01). Our subjective test
confirmed that the fine-shift reduced the audible musical
noise. This is because the fine-shift in (2) and the overlap-
add in (10) realize a gradual change in the spectrogram of
the separated signal [7]. We can say that the fine-shift ef-
fectively reduces the signal distortion when we employ it
for our new method.

We also applied our method to a 3-dimensional sensor ar-
rangement (Fig. 4 [Setup 2]). Table 2 shows the example
separation result for four sources (two male and two fe-
male speakers) with four sensors (N = M = 4). Here, the
system knew just the maximum distance (5.0 cm) between
the reference microphone (Mic. 3) and the others. We can
see from Table 2 that our proposed method can be applied
to such a 3-dimensional microphone array system. Here,
although there was no significant difference between the
MOS results for shift=L/4 and shift=L/8, the fine-shift
(shift=L/4 or L/8) reduced the musical noise.

Some sound examples can be found at [9].
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Figure 4: Experimental setups with non-linear arrays

4. CONCLUSION

We proposed a new method for separating sparse signals
by clustering the normalized observation vectors. Our
proposed technique 1) provides a novel BSS method that
can be applied to both (over-)determined and underdeter-
mined cases, 2) provides a new feature vector for cluster-
ing the observation vectors, 3) makes it easy to use a non-
linear/non-uniform sensor arrangement, and 4) makes it
possible to exploit the information obtained from all the
sensors for separation.

Appendix

This appendix explains why normalized observation vectorsx̄(f, τ )
form a cluster for a source. Let us approximate the multi-path
mixing model (1) by using a direct-path (nearfield) model (Fig. 5)

hjk(f) ≈
q(f)

djk

exp
�
 2πfc−1(djk − dJk) � , (14)

where djk > 0 is the distance between source k and sensor j.
We assume that the phase 2πfc−1(djk − dJk) depends on the
distance normalized with the distance to the reference sensor J .
We also assume that the attenuation q(f)/djk depends on both
the distance and a frequency-dependent constant q(f) > 0.
Substituting (14) and (4) into (6) and (7) yields

x̄j(f, τ ) ≈
1

djkD
exp �  π

2

(djk − dJk)

dmax � , D = � � M

j=1

1

djk
2
,

which is independent of frequency, and dependent only on the
positions of the sources and sensors. That is, the observation
vectors are clustered based on the source geometry. From the
fact that maxj,k |djk − dJk| ≤ dmax, an inequality

−π/2 ≤ arg[x̄j(f, τ )] ≤ π/2

holds. This property is important for the distance measure (8),
since |x̄ − x̄′| increases monotonically as | arg(x̄) − arg(x̄′)|
increases.

Table 1: Average SIR improvement [dB], average SDR
[dB] and average MOS (N = 4, M = 3),

y1 y2 y3 y4 MOS
InputSIRi −7.4 −6.2 −6.0 −1.0 -
Shift L/2 SIRi 16.4 10.5 14.2 11.1

SDRi 4.7 3.9 4.8 7.9 1.9

Shift L/4 SIRi 17.4 11.6 15.5 12.0
SDRi 5.5 4.7 5.6 8.7 2.6

Shift L/8 SIRi 17.9 11.8 15.9 12.3
SDRi 5.6 4.8 5.8 8.8 2.9

Table 2: Example SIR improvement [dB], SDR [dB] and
average MOS (N = 4, M = 4),

y1 y2 y3 y4 MOS
InputSIRi −8.1 −5.3 −6.6 −0.6 -
Shift L/2 SIRi 17.8 15.6 9.6 15.7

SDRi 4.2 5.7 3.6 11.5 1.9

Shift L/4 SIRi 19.0 16.5 9.9 17.0
SDRi 4.7 6.1 4.1 12.1 2.7

Shift L/8 SIRi 19.3 17.3 10.1 17.4
SDRi 4.9 6.6 4.2 12.2 2.7

sensor

source

Figure 5: Direct-path (nearfield) model
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