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ABSTRACT
Subspace based schemes for noise suppression rely on decom-
position of the noisy signal space into a signal (+noise) subspace
and a noise subspace. Existing schemes are derived under the
assumption that the dimensions of these subspaces are known
with certainty, although in practice they must be inferred from
the noisy data. We derive in this paper a subspace based en-
hancement scheme which takes into account the uncertainty of
the subspace dimensions. The structure of the resulting estima-
tor turns out to be similar to existing schemes, but the gain func-
tions applied to the components in the signal subspace are now
dependent on the likelihood that the signal subspace has a cer-
tain dimension. Simulation experiments with speech signals de-
graded by synthetic and natural noise sources show performance
improvements of 0.3–1.6 dB in segmental SNR as compared to
traditional schemes.

1. INTRODUCTION

The last decades have seen an explosion in the use of
mobile digital voice communications systems, and con-
sequently, the need for such systems to work in acousti-
cally noisy environments. Since most such systems have
been designed to work well with relatively noise-free in-
put speech signals, their performance deteriorate when the
input signals are noisy. A possible way to overcome this
problem is to reduce the noise content in the noisy speech
signal using a speech enhancement pre-processing step,
and then apply the noise-reduced speech signal as input to
the communication chain.
Traditional approaches for single-channel noise reduction
include short-time Fourier transform (STFT) based meth-
ods, e.g. [1, 2], model based methods which to a larger
extent try to exploit apriori speech production knowledge,
e.g. [3, 4], and subspace based approaches [5, 6] which
rely on vector space decomposition techniques.
The subspace based approaches exploit the idea of de-
composing the covariance matrix of the noisy speech sig-
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nal into two mutually orthogonal vector spaces, a signal
(+noise) subspace and a noise-only subspace. Noise re-
duction is obtained by discarding the noise subspace com-
pletely, while modifying the noisy speech components in
the signal subspace. Although essentially formulated for
the white noise case, it is straightforward to apply the sub-
space based techniques in the case of coloured noise; this
requires a pre-whitening transformation of the noisy input
signal prior to enhancement, and a de-whitening step af-
ter enhancement [5, 6, 7]. Further, extensions have been
presented which take into account the perceptual effects
of the human auditory system, e.g. [8].
A main assumption in subspace based enhancement tech-
niques is the existance of a lower-dimensional signal
subspace. Clearly, this assumption is signal dependent.
For example, for signal segments which can be approxi-
mated well by a sum of, say K, (exponentially damped)
constant-frequency sinusoids such as some voiced speech
segments, the corresponding covariance matrix is essen-
tially of rank 2K, and the signal subspace may be ap-
proximated as 2K-dimensional. Further, since in voiced
speech regions the signal-to-noise ratio (SNR) is often
high, the signal subspace dimension may be readily es-
tablished from a ‘gap’ in the eigenvalue spectrum of the
covariance matrix of the noisy signal. However, for other
speech sounds, e.g. unvoiced, transients, and transitional
regions, the situation is more difficult. First, the definition
of a signal subspace dimension is less clear because the
eigenvalues of the corresponding covariance matrix may
all be significantly larger than zero. Secondly, estimation
of the signal subspace dimension is harder because the
SNR for these speech sounds is often significantly lower
than in the voiced case discussed above.
Existing subspace based enhancement schemes [5, 6, 9]
derive estimators under the assumption that the signal sub-
space dimension is surely known. However, motivated by
the discussion above we note that this assumption is not
always valid. Therefore, we present in this paper an esti-
mator which takes into account the uncertainty of the sig-
nal subspace dimension. The derived estimator is simply
a linear combination of estimators for different assumed
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subspace dimensions, weighted by their probability of oc-
curence. Thus, rather than applying a hard decision on the
signal subspace dimension, the proposed algorithm uses a
’soft decision’ criterion.

2. SUBSPACE BASED ENHANCEMENT USING A
SOFT MODEL ORDER

As in [5] we consider a signal model of the form

x = s + w, where s = V a, (1)

and x ∈ RN denotes an observed noisy speech signal
vector, s ∈ RN denotes the clean speech signal and
w ∈ RN is an additive noise vector. The matrix V ∈
CN×K , K ≤ N , contains basis vectors as columns, and
a ∈ CK is a vector of zero mean random variables. We
assume that the clean speech and noise processes are un-
correlated and that s and w are Gaussian distributed with
probability density functions (pdfs) fS(s) = N (0, RS)
and f(w) = N (0, Rw), where Rs and Rw denote the co-
variance matrices of s and w, respectively.
We consider the conditional mean estimator given by

ŝ , E(s|x) =

∫
s

sf(s|x)ds, (2)

where E(·) denotes the statistical expectation operator,
and f(s|x) is the pdf of the clean signal vector conditioned
on the noisy observation. Since we are going to estimate
s in a subspace framework, we represent the signal sub-
space dimension by the integer-valued random variable m
and rewrite Eq. (2) as

ŝ =
∑
m

∫
s

sf(s|m, x)f(m|x)ds =
∑
m

f(m|x)ŝm, (3)

where ŝm , E(s|x, m) and the density f(m|x) is in fact
a probability mass function (pmf) because the signal sub-
space dimension m is an integer-valued random variable.
We see from Eq. (3) that ŝ is a linear combination of es-
timators ŝm for different values of m, weighted by the
likelihood that the signal subspace has dimension m. In
the following sections we derive expressions for ŝm and
f(m|x) used in Eq. (3).

2.1. Estimation of ŝm

Under our Gaussian assumptions, the conditional mean
estimator is identical to the linear minimum mean-squared
error estimator [10], i.e. ŝm can also be found from

ŝm = Hmx, (4)

where Hm ∈ RN×N is given by

Hm = arg min
H

E‖s − Hx‖2
2, s.t. rank(H) = m.

The rank constraint on H ensures that the covariance ma-
trix of ŝm has the prescribed rank of m.
The procedure for estimating Hm is well-known and can
be derived from e.g. [5, 6, 9]. To facilitate our further dis-
cussion, we simply state the solution here. Let us, with-
out loss of generality, assume that the noise is white, i.e.,
Rw , E(wwT ) = σ2

wI , where (·)T denotes vector trans-
position, σ2

w is the noise variance, and I is the identity
operator in RN . Further, let Rx = UΛxUT denote the
eigenvalue decomposition (EVD) of the covariance ma-
trix Rx of the noisy signal; the unitary matrix U ∈ RN×N

contains the eigenvectors as columns, while the diagonal
matrix Λx contains the eigenvalues λxi

, i = 1, . . . , N , in
descending order. We partition U as U = [U1 U2], where
U1 ∈ R

N×m is an m-dimensional orthonormal basis for
the (assumed) signal subspace, while U2 ∈ RN×(N−m)

constitutes a basis for the corresponding noise subspace.
It can then be shown that

Hm = U1GmUT
1 , (5)

and
Gm = I − diag(σ2

w/λx1
, . . . σ2

w/λxm
).

2.2. Estimation of f(m|x)

In order to estimate the posterior density f(m|x) in Eq.
(3) we rewrite it using Bayes rule

f(m|x) =
f(x|m)f(m)

f(x)
. (6)

Here, f(x) is independent of m and can be seen as a con-
stant which ensures that the posterior integrates to one.
The pmf f(m) reflects a priori knowledge of observed sig-
nal subspace dimensions; in lack of any such knowledge
we choose a uniform prior, f(m) = 1/N, m = 1, . . . , N .
In order to derive an expression for the likelihood f(x|m),
we first note that since the columns of the matrix U1 form
a basis for the signal subspace, we have

s = U1a
′,

where a′ ∈ Rm. We assume that U1 is known (although it
is estimated from the data) and express f(x|m)1 as

f(x|m) =

∫
a′

f(x|a′, m)f(a′|m)da′. (7)

Under the Gaussian noise assumption, the density
f(x|a′, m) is given by

f(x|a′, m) =(2πσ2
w)−N/2×

exp(−
1

2σ2
w

(x − U1a
′)T (x − U1a

′)).
(8)

1Having assumed U1 to be given, the pdf f(x|m) is, strictly speak-
ing, conditioned on U1
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Using that f(s) = N (0, Rs), it follows that f(a′|m) =
N (0, Λs,m), i.e.

f(a′|m) =(2π)−m/2|Λs,m|−1/2×

exp(−
1

2
a′T Λ−1

s,ma′),
(9)

where | · | denotes the matrix determinant, and Λs,m ∈
Rm×m is a diagonal matrix containing the m largest
eigenvalues of Rs. Inserting Eqs. (8) and (9) in Eq. (7)
and using the fact that [11]∫

y

exp(−
1

2
(d + bT y + yT Cy))dy

= (2π)m/2|C|−1/2 exp(−
1

2
(d −

bT C−1b

4
)),

where d ∈ R, y, b ∈ Rl, and C ∈ Rl×l, we obtain the
following closed-form expression

f(x|m) =(2πσ2
w)−(N−m)/2(2π)−m/2|Λx,m|−1/2×

exp(−
1

2σ2
w

(xT x − xT U1DUT
1 x)),

(10)

where D is a diagonal matrix given by D = I − σ2
wΛ−1

x,m,
and Λx,m contains the m largest eigenvalues of Rx on the
main diagonal.

2.3. Algorithm summary

For a given noisy signal frame x, we estimate the cor-
responding covariance matrix Rx and compute its eigen-
value decomposition Rx = UΛxUT . Assuming knowl-
edge of the noise variance σ2

w, we insert Eq. (10) in Eq.
(6) and evaluate the expression for the possible signal sub-
space dimensions m = 1, . . . , N . Also, using the EVD of
Rx we compute the estimates of ŝm in Eq. (4). Finally,
we use Eq. (3) to find the clean signal estimate ŝ.
It is interesting to use Eqs. (4) and (5) to rewrite Eq. (3):

ŝm =

m∑
i=1

uigiu
T
i x, (11)

where ui is the i’th column of U and gi is the i’th diagonal
element of Gm. Inserting Eq. (11) in Eq. (3) gives

ŝ =
N∑

m=1

m∑
i=1

uigif(m|x)uT
i x

=

N∑
i=1

N∑
m=i

uigif(m|x)uT
i x

= UG′UT x,

where G′ = diag(g′

1, . . . , g
′

N ), and g′

i =

gi

∑N
m=i f(m|x).

We conclude that ŝm, m = 1, . . . , N need not be com-
puted explicitly, because the derived estimator has the
same structure as the original estimator in Eq. (4), but the
gain factors are modified in accordance with the probabil-
ities of observing a given signal subspace dimension.

3. SIMULATION RESULTS

We evaluate the presented algorithm in simulation exper-
iments with 48 speech signal excerpts (8 different speak-
ers, 4 female and 4 male) with a sampling frequency of
8 kHz and a duration of 4-5 seconds each. We construct
noisy speech signals by adding synthetic and natural noise
sources to the clean speech signals at SNR levels of 20,
10, and 0 dB. The noise sources are taken from the Noi-
sex data base [12] and encompass white noise, pink noise,
car interior noise, and F16 cockpit noise. In all experi-
ments, the noise power spectral density, which is roughly
constant across time, is estimated from a noise-only signal
region of approximately 350 ms preceding speech activ-
ity. Signal frames x of length N = 60 samples are taken
from the noisy signal with an overlap of 50%. We esti-
mate noisy covariance matrices Rx from segments of 300
samples, centered around the frame to be enhanced. Then
the noisy signal frames are pre-whitened using the pro-
cedure outlined in [5], enhanced using different versions
of the subspace based enhancement scheme described be-
low, and de-whitened. Subsequently, the enhanced signal
frames are overlap-added using a Hanning window.
We compare the proposed soft-decision based estima-
tor with two schemes which rely on a hard signal sub-
space dimension. Method 1 is simply the scheme out-
lined in [5], where the dimension of the noise subspace
of Rx is increased in steps of 1, until the largest eigen-
value in the noise subspace becomes significantly larger
than the smallest eigenvalue, in which case the process
is terminated. We also considered another often used
scheme, where the dimension of the signal subspace is de-
termined as the number of eigenvalues of Rx larger than
σ2

w, i.e., ŝ = ŝm∗ where m∗ is the cardinality of the
set {λxi

: λxi
> σ2

w}. However, this scheme gave re-
sults which were essentially identical to those of Method
1, and has therefore not been included here. Method
2 is a slightly simplified version of the proposed al-
gorithm where the signal subspace dimension with the
largest probability f(m|x) is chosen, i.e., ŝ = ŝm∗ with
m∗ = argmax

m
f(m|x). Finally, Method 3 is the proposed

soft-decision scheme.
To evaluate and compare the performance of the meth-
ods, we apply the segmental SNR (Seg-SNR) defined as
the average SNR, computed across each enhanced frame
in the entire set of input signals. Tables 1–4 show re-
sults for different noise sources. We see that the proposed
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Input SNR [dB]White Noise
0 10 20

Noisy -13.64 -3.64 6.36
Meth.1 -5.14 2.76 10.50
Meth.2 -4.65 3.12 10.76
Meth.3 -4.52 3.22 10.85

Table 1: Segmental SNR [dB], white Gaussian noise.

Input SNR [dB]Pink Noise
0 10 20

Noisy -12.30 -2.30 7.70
Meth.1 -4.32 3.38 11.39
Meth.2 -3.92 3.66 11.62
Meth.3 -3.75 3.80 11.73

Table 2: Segmental SNR [dB], pink noise.

method improves performance in all cases. More specif-
ically, Method 3 increases the Seg-SNR with 0.3–1.6 dB
as compared to Method 1. Informal listening tests confirm
that Method 3 suppresses the noise better, an observation
which is particularly clear in low SNR regions.
Also Method 2 performs better than Method 1, in fact, it
achieves performance close to that of Method 3. Compar-
ing Methods 2 and 3 shows that Method 2 rejects more
noise in noise-only regions, while Method 3 is better in
speech regions. However, signals enhanced with Method
2 contain disturbing ’switching effects’ in transitions be-
tween speech presence and absence. Observing further
that Method 2 is of similar computational complexity as
Method 3, makes Method 3 the prefered scheme.
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