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ABSTRACT
We present a prototype system for real-time blind source sep-
aration (BSS) and directions of arrival (DOA) estimation. Our
system uses a small three-dimensional array with 8 micro-
phones and has the ability to separate signals distributed in three-
dimensional space. The mixed signals observed by the micro-
phone array are processed by Independent Component Analy-
sis (ICA) in the frequency domain. The system estimates DOA
of the source signals as a by-product of the separation process.
In our previous work [1], we presented a batch-type BSS of
recorded signals. In contrast, this prototype system performs a
real-time separation.

1. INTRODUCTION

Blind source separation (BSS) is a technique for estimat-
ing original source signals using only observed mixtures.
The BSS of audio signals has a wide range of applications
including speech enhancement [2] for speech recognition,
hands-free telecommunication systems and high-quality
hearing aids. In most realistic applications, the sources
are located in three-dimensional space and the locations
may change. In this contribution, we present our proto-
type system for real-time BSS of three-dimensionally lo-
cated signals (Fig. 1) and describe the techniques used in
the system.

2. FREQUENCY DOMAIN BSS

Independent component analysis (ICA) [3] is one of the
main statistical methods used for BSS. In a reverberant
environment, the signals are mixed in a convolutive man-
ner with reverberations, and the separation system is a ma-
trix of filters. There are two major approaches to solving
the convolutive BSS problem. The first is the time do-
main approach, where ICA is applied directly to the con-
volutive mixture model [4, 5, 6]. The other approach is
frequency domain BSS, where ICA is applied to multiple
instantaneous mixtures in the frequency domain [7, 8, 9].
The computation cost of the frequency domain approach
is much less than that of the time domain approach. Our
system employs frequency domain ICA using a blockwise
batch algorithm [10].
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Figure 1: Prototype system for real-time BSS and DOA
estimation of 3-D located signals

2.1. ICA in the frequency domain

WhenN source signals ares1(t), ..., sN (t) and the signals
observed byM sensors arex1(t), ..., xM (t), the mixing
model can be described by

xj(t) =
∑N

i=1

∑
l hji(l)si(t − l), (1)

wherehji(l) is the impulse response from sourcei to sen-
sor j. The separation system typically consists of a set
of FIR filterswkj(l) of lengthL designed to produceN
separated signalsy1(t), ..., yN (t), and it is described as:

yk(t) =
∑M

j=1

∑L−1
l=0 wkj(l)xj(t − l). (2)

Figure 2 shows the flow of BSS in the frequency domain.
Each convolutive mixture in the time domain is converted
into multiple instantaneous mixtures in the frequency do-
main. By using a short-time discrete Fourier transform
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Figure 2: Flow of frequency domain BSS

(DFT), the mixing model is approximated as:

x(f, m) = H(f)s(f, m), (3)

where f denotes the frequency,m is the frame index,
s(f, m) = [s1(f, m), ..., sN (f, m)]T is the vector of
the source signals in the frequency binf , x(f, m) =
[x1(f, m), ..., xM (f, m)]T is the vector of the observed
signals, andH(f) is a matrix consisting of the frequency
responsesHji(f) from sourcei to sensorj. The separa-
tion process can be formulated in each frequency bin as:

y(f, m) = W(f)x(f, m), (4)

wherey(f, m) = [y1(f, m), ..., yN (f, m)]T is the vector
of the separated signals, andW(f) represents the separa-
tion matrix. Therefore, we can apply an ordinary (instan-
taneous) ICA algorithm to each frequency bin and calcu-
late the separation matrices.W(f) is determined so that
the elements ofy(f, m) become mutually independent for
eachf .

The ICA solution suffers from scaling and permutation
ambiguities. This is because that ifW(f) is a solution,
thenD(f)P(f)W(f) is also a solution, whereD(f) is
a diagonal complex valued scaling matrix, andP(f) is
an arbitrary permutation matrix. There is a simple and
reasonable solution for the scaling problem:

D(f) = diag{[P(f)W(f)]−1}, (5)

which is obtained by the minimal distortion principle
(MDP) [11] or the projection back method [12], and we
can use it. On the other hand, the permutation problem is
complicated. Before constructing a separation filter in the
time domain, we have to align the permutation so that each
channel contains frequency components from one source
signal. The time domain filters are obtained by the inverse
discrete Fourier transform of frequency domain separation
matrices.
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Figure 4: Solving ambiguity of estimated DOAs

2.2. DOA estimation using ICA solution

The frequency response matrixH(f) is closely related
to the locations of the sources and sensors. If a separa-
tion matrixW(f) is calculated successfully and it extracts
source signals with a scaling ambiguity, there is a diagonal
matrix D(f), andD(f)W(f)H(f) = I holds. Because
of the scaling ambiguity, we cannot obtainH(f) simply
from the ICA solutionW(f). However, the ratio of el-
ements in the same columnHji(f)/Hj′i(f) is invariable
in relation toD(f), and is given by

Hji(f)
Hj′i(f)

=
[W−1(f)D−1(f)]ji

[W−1(f)D−1(f)]j′i
=

[W−1(f)]ji

[W−1(f)]j′i
, (6)

where[·]ji denotes theji-th element of the matrix.

We can estimate the DOA of a source signal by using this
invariant. With a far-field model, a frequency response is
formulated as:

Hji(f) = e2πfc−1aT
i pj , (7)

wherec is the wave propagation speed,ai is a unit vector
that points to the direction of sourcei (absoluteDOA),
andpj represents the location of sensorj. According to
this model, we have

Hji(f)/Hj′i(f) = e2πfc−1aT
i (pj−pj′ ) (8)

= e2πfc−1‖pj−pj′‖ cos θi,jj′ (f),(9)

whereθi,jj′ (f) is the direction of sourcei relative to the
sensor pairj andj ′ (relative DOA). Figure 3 shows the
relation of the absolute DOA and the relative DOA.
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By using the argument of (9) and (6), we can estimate:

θ̂i,jj′ (f) = arccos
arg(Hji/Hj′i)

2πfc−1‖(pj − pj′)‖

= arccos
arg([W−1]ji/[W−1]j′i)

2πfc−1‖(pj − pj′)‖ .(10)

θ̂i,jj′ (f) is estimated for each frequency binf , but we
omit the argumentf to simplify the notation in the fol-
lowing description.
The DOA estimation involves certain ambiguities. When
we use only one pair of sensors or a linear array, the es-
timated θ̂i,jj′ determines a cone rather than a direction.
This ambiguity can be solved by using multiple sensor
pairs (Fig. 4). If we use sensor pairs that have different
axis directions, we can estimate cones with various ver-
tex angles for one source direction. If the relative DOA
θ̂i,jj′ is estimated without any error, the absolute DOAai

satisfies:
(pj − pj′)T ai

‖pj − pj′‖ = cos θ̂i,jj′ . (11)

When we use L sensor pairs whose indexes are
j(l)j′(l)(1 ≤ l ≤ L), ai is given by the solution of the
following equation:

Vai = ci, (12)

where V
�
= (v1, ...,vL)T , vl

�
=

pj(l)−pj′(l)

‖pj(l)−pj′(l)‖ is

a normalized axis, andci
�
= [cos(θ̂i,j(1)j′(1)), ...,

cos(θ̂i,j(L)j′(L))]T . Sensor pairs should be selected so that
rank(V) ≥ 3 if the potential source locations are three-
dimensional.
In a practical situation,̂θi,j(l)j′(l) has an estimation error,
and (12) has no exact solution. Thus we adopt an optimal
solution by employing certain criteria such as:

âi = argmin
a

||Va − ci|| (subject to ||a|| = 1) (13)

This can be solved approximately by using the Moore-

Penrose pseudo-inverseV+ �
= (VT V)−1VT , and we

have:

âi ≈ V+ci

||V+ci|| . (14)

Accordingly, we can determine a unit vectorâi pointing
to the direction of sourcesi.
Figure 5 shows an example of a DOA estimation result.
Each point plotted on a unit sphere denotes the estimated
DOA of a frequency component in one frequency bin.
The points can be clustered by using an ordinary cluster-
ing method such as thek-means algorithm [13], then the
DOAs of source signals are given as the centroids of the
clusters. This information is useful for solving the permu-
tation problem.

2.3. Permutation problem

The permutation problem is the most critical issue as re-
gards frequency domain BSS. There are two major ap-
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Figure 5: Estimated DOAs of frequency components
(above) and clustered result (below)

proaches for solving this problem: the DOA based method
and the correlation based method. The estimated DOA
is useful for solving the permutation problem, however
the estimation suffers from errors in a reverberant envi-
ronment and the classification according to the DOA is
inconsistent in some frequency bins. Thus we employ the
correlation based method for such frequency bins. The
combination of these two methods provides a good solu-
tion. The procedure is presented in detail in [9]. Recently,
we have also proposed another method to solve the per-
mutation problem by using basis vector clustering, which
is detailed in [14].

3. PROTOTYPE SYSTEM

We have developed a prototype system for real-time BSS
and DOA estimation. Our system uses 8 microphones
located at the vertexes of a 4cm×4cm×4cm cube and
has the ability to separate signals distributed in three-
dimensional space. This system is implemented in soft-
ware (MATLAB + C) and needs no special hardware ex-
cept for an A/D converter. We adopted a low-delay block-
wise batch implementation [10], where ICA is applied for
a block of a few seconds but the system input-output de-
lay is kept as small as less than a second. We calculateW
by using a complex-valued version of InfoMax [15] com-
bined with the natural gradient whose nonlinear function
is based on the polar coordinate [16].
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Table 1: Experimental conditions
Microphone 8 omni-directional microphones
Sampling rate 8 kHz
Frame length 1024 points (128 ms)
Frame shift 256 points (32 ms)
Learning block size 3.2 s
Filter update interval 1.6 s
ICA algorithm Infomax (complex valued)
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Figure 6: Source locations.s2 was moved att = 20 s.
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Figure 7: Experimental results

4. EXPERIMENTS

To examine the performance of our system, we carried
out experiments using mixture of three speech signals
recorded in a room. The layout of the microphone array
and loudspeakers is shown in Fig. 6. In this experiment,
we assumed thats1 is a target signal and other two are
interference signals. One of the interference signals,s2,
was moved att = 20 s. Other conditions are summarized
in Table 1. We calculated time-varying separating filters
by using the mixtures of live recorded source signals, and
evaluated Signal to Interference Ratio (SIR) by using in-
dividually activated source signals. The results are shown
in Fig. 7. We can see that the separation performance de-
clines when the interference signal moves and that it re-
covers after about 6 s.

5. CONCLUSION

We have developed a prototype system for the real-time
BSS of speech signals distributed in three-dimensional
space. The system estimates DOA of the source signals
as a by-product of the separation process. Some sound
examples can be found on our web site [17].
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