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ABSTRACT

Separating independent speech sources from their convolutive mix-
tures in a reverberant acoustic environment is a challenging prob-
lem because of two difficulties: (a) very little is known about the
source signals or the way they are mixed, and (b) both spatial in-
terference from competing sources and temporal echoes due to
room reverberation are observed in the mixtures. In this paper,
after blindly identifying the acoustic MIMO system, we deal with
spatial interference and temporal echoes in two different steps by
converting an M x N MIMO system into M SIMO systems. The
performance is evaluated by simulations with measurements ob-
tained in the varechoic chamber at Bell Labs.

1. INTRODUCTION

Source separation and speech dereverberation have many appli-
cations in hands-free communication, multi-modal collaborative,
and robust intelligent systems. In this paper, we study this problem
in a reverberant acoustic environment where there are M indepen-
dent speech sources and N microphones with M < N. At the nth
microphone and the kth sample time, we have:

M

za(k) = Y NiaSu(k, Ln) + ba(k), &
m=1
]{}:1,2,”-,](,71:1,2,"-,]\],

where (-)” denotes the transpose of a matrix or a vector,
T
hnm = [ hnm,O hnm,l hnmaLh—l ] ’
n:1727'“7N7 m:1727"'7M7

is the impulse response (of length L, Vm, n) between source m
and microphone n,
sm(k—Ln+1)]"

Su(k,Ly) = [ sm(k) sm(k—1) -

is a vector containing the last L, samples of the mth source sig-
nal s.,, and b, (k) is a zero-mean additive white Gaussian noise
(AWGN) with variance 2, V.

Using the z transform, the signal model of the MIMO system
(1) is expressed as

M
Xn(2) = ) Hum(2)Sm(2) + Ba(2), n=1,2,---,N, (2)
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where H,.p, (2) = fz’gl h

Traditional blind source separation (BSS) is accomplished by
independent component analysis (ICA), which applies a group of
de-mixing filters to the microphone signals and reinforces mu-
tual independence among the outputs, regarded as the estimates
of the source signals. Existing ICA algorithms differ in the way
that the dependence of the separated speech signals is defined.
The well-known independence criteria include second-order statis-
tics (SOS), higher (than second) order statistics, and information-
theory-based measures (please refer to the books [1], [2] and refer-
ences therein for a more detailed discussion on various ICA meth-
ods). Alternatively, we will propose in this paper a new method for
source separation and speech dereverberation based on blind chan-
nel identification. The rigorous derivation of this method would
help us better understand the procedure and limitation of BSS tech-
niques. More insightful performance merits in addition to signal-
to-interference ratio (SIR) will be suggested and used in the simu-
lations.

—1
nm,l%2 -

2. BLIND IDENTIFICATION OF A MIMO SYSTEM

In this paper, we intend to separate competing speech sources af-
ter blindly identifying the MIMO FIR system. Blind MIMO iden-
tification is difficult even for communication systems with short
channel impulse responses. It becomes dramatically complicated
when an acoustic system is the target as the case studied in this
paper. Trying to solve it all at once involves a huge number of pa-
rameters to estimate and the current research in this area remains
at the stage of feasibility investigations. Moreover, scaling and
permutation ambiguities are similar to what have been observed in
the BSS problem. Therefore we choose to decompose the problem
into several subproblems in which SIMO systems are blindly iden-
tified. We assume that from time to time each speaker occupies at
least one exclusive interval alone and when they start talking si-
multaneously the room acoustics have not yet significantly varied.
Then in each single-talk interval a SIMO system will be blindly
identified and its channel impulse responses will be saved for later
use in source separation and speech deconvolution during double
or multiple talk periods. In this paper, we assume that the SIMO
systems under investigation are all blindly identifiable (for blind
identifiability please see [3]) and we will employ the unconstrained
normalized multichannel frequency-domain LMS (UNMCFLMS)
algorithm [4].



(b)

Figure 1: Illustration of the two-stage procedure for source sep-
aration and speech dereverberation with respect to s; ina2 x 3
MIMO system. (a) Cancellation of spatial interference from s»
and (b) dereverberation in light of the Bezout theorem.

3. SEPARATING SPATIAL INTERFERENCE AND
TEMPORAL ECHOES

3.1. Example: Conversion of a2 x 3 MIMO System to Two
SIMO Systems

For a2 x 3 MIMO system, the spatial interference is cancelled by
using two microphone signals at a time, as illustrated in Fig. 1 (a).
As a results, the 2 x 3 MIMO system is converted to two SIMO
systems with the two speech sources as the inputs. Then for sy,
we have

Yoip(2) = Hsip1(2)X1(2) + Hoy p2(2)Xa(2) +

HS1,p3(Z)X3(Z)

3
= Y Hoyp(2)X,(2), p=1,23, (3
q=1
where H, pp(2z) = 0, Vp. The polynomials Hs, pq(2), p,q =
1,2, 3, p # q, are chosen such that:
YSlaP(z) :Fsl,p(Z)S1(Z)+leﬁp(Z), p= 17273' (4)

As shown in Fig. 1 (a), one possibility is to choose:

Hsy12(2) = Hsa(2), Hsyas(z) = —Haa(z),
Hyy21(2) = Hsa(2), Hsy 23(z) = —Hia(z), (5)
Hsy31(2) = H2(2), Hs 32(2) = —Hiz(2).

In this case, we find that:
Fs,1(2) = Hs2(2)Hai(2) — Haa(2)Hau(2),
Fs,2(2) = Hs(2)Hii(2) — Hi2(2)Hz1(2),  (6)
Fsl,e,(z) = HQQ(Z)Hll(Z) — H12(Z)H21(Z).

Since deg [Hnm (2)] = Ly — 1, where deg|[-] is the degree of a
polynomial, therefore deg[Fs, »(2)] < 2L, — 2. Since neither
{Hi2(2), H22(2), Ha2(2) } nor {H11(2), H21(2), Hs1(2)} share
common zeros as assumed for blind identifiability of these SIMO
systems, {Fs,,1(z), Fs, 2(2), Fs,,3(2)} will not share any com-
mon zeros.

The second SIMO system corresponding to the source s2 can
be derived in a similar way, but the procedure is omitted due to
space limitations.

3.2. Generalization

The approach to separating spatial interference and temporal echoes
explained in the previous subsection on a simple example will be

generalized here to an M x N MIMO system (M < N). We begin

with writing (2) into vector/matrix form

X(2) = H(2)S(2) + B(2), O]
where

X(z) = [Xi(2) Xa(2) Xn(2)]",
H11(2) H12(Z) H1M(Z)
H21(Z) HQQ(Z) HQM(Z)

H(:) = , , S
HN1(Z) HNQ(Z) HNM(Z)

S(z) = [51(2) Sa(2) - Sm()]",

B(z) = [Bi(2) Ba(2) -+ Bn(2)]"

Let us choose M from N microphone outputs and we have
P = C¥ different ways of doing so. Forthepth(p = 1,2,---, P)
combination, we denote the index of the M selected microphone
signals as py,, m = 1,2,---, M, and getan M x M MIMO sub-
system. For this subsystem, we consider the following equation:

?P(z) :Hsap(z)if‘(z)7 b= 1727"'7P7 (8)
where
?p(z) = [Y10(2) Yo p(2) -+ YSMaP(Z)]T7
HS1aP1(z) HSlaPZ(Z) HS1,PM(2)
HSzapl(z) HSzaPQ(z) HSzapM(z)
HSaP(Z) = : : : ’
Hopgo1(2) Hapgo(2) - Hapgpoi (2)
ip(z) = [Xm (2) Xpy (2) --- Xom (Z)]T

Let H,(z) be the M x M matrix obtained from the system’s
channel matrix H(z) by keeping its rows corresponding to the M/
selected microphone signals. Then similar to (7), we have

X,(2) = Hy(2)S(2) + By (2), ©)

where B, (2) = [Bp, (2) Bpy(2) -+ Byp,,(2)]”. Substituting (9)
into (8) yields
?p(z) = Hs,p(z)Hp(Z)g(z) + Hs,p(z)ﬁp(z)- (10
In order to remove the spatial interference, the objective here
is to find the matrix H,,(z) whose components are linear combi-
nations of H,(z) such that the product

3,(2) 2 Hop(2)H,(2) (12)



would be a diagonal matrix and

Yinp(2) = Fapp(2)Sm(2) + Bs,p(2), (12)
m:1727"'7M7p:1727"'7P'

Obviously a good choice for H; ,(2) is the adjoint of matrix H, (z),
i.e., the (7, j)th element of H; ,(2) is the (j, 2)th cofactor of H,(2).
Consequently, the polynomial ., ,(z) would be the determinant
of H,(z) and

Again, it can be shown that {F;_, »(2), p=1,2,---, P} do not
share common zeros and the length of the FIR filter fs,.. , would
bELf < M(Lh—1)+1.

4. SPEECH DEREVERBERATION FOR SIMO SYSTEMS

For the SIMO system with respect to source s, (m=1,2,---, M),
we apply the polynomials Gs,, »(2) (» =1, 2, -- -, P) to its out-
puts, as shown in Fig. 1 (b), and add the results to get

P
Sm(2) =D Gopp(2)Verm.n(2): (13)
p=1
Since {F,, »(z), p=1,2,---, P} do not share common zeros,

we know from the Bezout theorem that there exists a set of Gs,,, »(2)
such that

P
D Fanin(2)Gamn(2) =1, (14)

and §m(z) = S (z) in the absence of noise. The idea of using the
Bezout theorem for dereverberation of an acoustic SIMO system
was first proposed in [5] in the context of room acoustics, where
the method is more widely referred to as the MINT (multichannel
inverse theorem) technique.

To find the dereverberation filters, we write the Bezout equa-
tion (14) in the time domain as:

P
Finbs, = Z FS 0950 = €15 (15)
p=1
where
Fo, = [Fi.1 FS.» Fi.r ],
T
9%, = [ gsTm,1 9?,,“2 gfm,p ] )
T
Yorop = [ 9sm,p,0  Gsm,p,1 9sm,p,Lg—1 ] >
L, is the length of the FIR filter gs,,, .»,
( fom.p,0 0 0 T
: forpo e 0
Fg , = fsnwp,Lf—l
0 fommpLs—1 " fompo
L 0 0 fSrnanLf_l—

isan (Ly+ Ly —1) x Ly matrix,ande; = [ 1 0 0 ]T
isan (Ly + Ly — 1) x 1 vector. In order to have a unique solution
for (15), L, must be chosen in such a way that Fg_ is a square
matrix. In this case, we have:

_Ly—1 ML 1)
- P-1—- P-1 °
The shortest dereverberation filters are idea but impractical. In our

implementation, we allow a larger L, than necessary and solve
(15) in the least squares sense: g, g = Fﬁjlel, where Fg;ﬁ =

(F‘;,ngm)*l F¢ T is the pseudo-inverse of the matrix FS_. If

a decision delay d is taken into account, then the dereverberation
filters turn out to be

L,

(16)

9.,..15 = Flea, 17
T
0 --- 0 1 0 --- 0
where g; = ~ ~
d Li+Lg—d—2

5. SSIMULATIONS

In this section, we will evaluate the performance of the proposed
blind source separation and speech dereverberation algorithm via
simulations in realistic acoustic environments.

5.1. Performance Measures

Similar to what was adopted in our earlier study [4], we will use the
normalized projection misalignment (NPM) to evaluate the per-
formance of a BClI algorithm. To assess the performance of source
separation and speech dereverberation, two measures, namely signal-
to-interference ratio (SIR) and speech spectral distortion, are used
in the simulations. For speech spectral distortion, we employed
the Itakura-Saito (IS) distortion measure [6]: dis,s,.. . For the SIR,
we referred to the notion given in [7] but defined the measure in
a different manner since their definition is applicable only for an
M x M MIMO system. In this paper, our interest is in the more
general M x N MIMO systems with M < N.
We first define the average input SIR at microphone 7 as:

sR* 2 L - B {[hnm * sm ()"} ) (8
o> (ZM Bl rsi))

m=1 i=1,i%m

where E{-} and * denote mathematical expectation and linear con-
volution, respectively. Then the overall average input SIR is given

by:
1 N
in é in
SIR™ 2 NE SIRI™. (19)
n=1

The output SIR is defined using the same principle but the ex-
pression will be more complicated. For a concise presentation, we
denote ¢, ;i (» = 1,2,---,P, 4,5 = 1,2,---, M) as the im-
pulse response of the equivalent channel from the ith input to the
jth output for the pth M x M separation subsystem. From (10)
and (11), we know that ¢,, ;; corresponds to the (j, 7)th element of
®,(z) and Yp,mm = fs...p- Then the average output SIR for the
pth subsystem is:

A S E{[pii % si(R)]? }
S sy B8 si(0)?}

SIR)™ , (20)
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Figure 2: Floor plan of the varechoic chamber at Bell Labs (coor-
dinate values measured in meters).

and the overall average output SIR is found as:

P
out é 1 out
SIR! —FE SIRSM®. (21)

p=1

5.2. Experimental Setup and Results

The simulations were conducted with the impulse responses mea-
sured in the varechoic chamber at Bell Labs [8]. A diagram of the
floor plan layout is given in Fig. 2, which shows the positions of
the three microphones and two speech sources (one male and the
other female). Speech signals were sampled at 8 kHz. The wall
panels in the chamber were adjusted with four room acoustic con-
ditions being formed. The microphone outputs are computed by
convolving the speech signals and corresponding channel impulse
responses. At each microphone, additive noise was inserted at 75
dB signal-to-noise ratio (SNR). For BCI, both adaptive and batch
algorithms were investigated. For speech dereverberation, the de-
lay d was fixed as Ly, — 1.

Table 1 summarizes the experimental results for all four differ-
ent room acoustics. We see that as room reverberation and chan-
nel length increase, channel estimates become less accurate. But
although the distortions in the final recovered speech signals grow
too, they remain at an acceptable level (the 1S measure is less than
0.2 even in the worst case), implying some promise of success-
ful use of the proposed algorithm in prospect speech processing
systems.

6. CONCLUSIONS

Blind separation of speech sources from their convolutive mixtures
is a very difficult problem in a real reverberant environment. Exist-
ing blind source separation methods focus primarily on the signal-
to-interference ratio and observe high distortion in their separated
signals when room reverberation is significant. A source sepa-
ration and speech dereverberation was proposed based on blind
channel identification techniques. After the mixing system is blindly
identified, we showed that spatial interference and temporal echoes
could be separated and we then dealt with them in two sequen-
tial steps. We conducted experiments using various real impulse
responses measured in the varechoic chamber at Bell Labs. The

Table 1: Performance of the source separation and speech dere-
verberation algorithm based on BCI techniques in the varechoic
chamber at Bell Labs with different panel configurations.

NPM (dB)  SIR!™ SIR°“t  After S.S. After S.D.
BCI Hy, Hs, (dB) (dB) d%siﬁ d%SﬁSQ d%?ﬁ dISsD,sQ

89% panels open, Teo = 240 ms, L, = 256
(@) -17.472 -17.801 0.231 52.016 1.9476 2.1368 0.0476 0.0258
(b) -43.556 -35.374 0.231 74.970 2.1041 2.2104 0.0002 0.0006
75% panels open, Teo = 310 ms, L;, = 256
(a) -18.737 -18.057 0.391 52.899 2.6878 2.8424 0.0307 0.0205
(b) -50.533 -42.994 0.391 74.966 2.8021 3.0904 0.0032 0.0031
30% panels open, Teo = 380 ms, L, = 512
(&) -13.366 -11.581 0.249 44.780 2.4084 3.9952 0.0755 0.1773
(c) -38.711 -29.868 0.249 73.932 2.8960 4.2943 0.0019 0.0044
Panels all closed, Tgo = 580 ms, Lj, = 512
(@) -13.818 -14.470 0.475 44.999 2.6414 4.8217 0.1592 0.1988
(c) -50.533 -42.994 0.475 73.873 2.6321 4.4309 0.0004 0.0007
NOTES:

Hs,,, represents the SIMO system corresponding to source s,
Teo denotes 60-dB reverberation time in the 20-4000 Hz band.
S.S. and S.D. stand for source separation and speech dereverbera-
tion, respectively.

(a) the adaptive UNMCFLMS BCI algorithm [4]. (b) the Batch
(SVD) BCI with 2500 samples. (c) the Batch (SVD) BCI with 3000
samples.

results demonstrated the success and robustness of the proposed
algorithm in highly reverberant acoustic environments.
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