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Abstract

We present a data-driven speech enhancement system based on
empirical statistical estimations of speech in the log-spectral
magnitude domain, where the enhancement filter is trained
at each SNR index. We use a estimation method called
SNRGMM, which were developed in our previous work, to
cluster the training data and learn the enhancement filter at each
SNR index. This measurement is later used in processing to
switch noisy speeches to a nearest trained filter. For the en-
hancement filter training, instead of conventional the code-book
dependent piecewise transform, we develop a general statistical
estimations based on empirical joint or cumulative density. The
empirical minimum mean square error (EMMSE), maximum a
posterior probability (EMAP) and cumulative histogram equal-
ization (CHEQ) methods are implemented and investigated in
this work. A simulation mode for the cases, when a pair of
noisy and clean speech databases are unavailable, is also con-
sidered. In the experimental evaluation, we use the AURORA2
for learning the enhancement filters and apply them to the AU-
RORA2 Japanese version. The experiment results show im-
provements in both SNR and ASR performances of the pro-
posed methods. Among the empirical estimators, the CHEQ
shows better results in ASR with the approximately 62 percents
relative improvements in the clean training and 41 percents rela-
tive improvement in the multi condition training. Moreover, the
CHEQ method is shown to be effective with smaller number of
samples in training database.

1. Introduction
Noise reduction is an important problem of speech process-
ing, where the statistical methods are frequently used. Among
this group of methods, both the model-based and data-driven
approaches have been studied. The model-based approaches
[1] require an explicit in model assumptions and are not suffi-
cient for some real conditions, when we are dealing with long
time reverberation or some types of noise, which contain other
sources. The data-driven approaches have been studied mainly
for speech recognition [2]. The SNR-dependent cepstral nor-
malization [2] uses instantaneous SNR, which is estimated in
the same manner as in the model-based approaches and there-
fore, has the same mentioned above limitations. Later, the
codebook-dependent piecewise transform has been more fre-
quently used [2], where the codebook is based VQ or GMM
state. The codebook-dependent based on GMM training is also
applied for speech enhancement [3]. Though the cepstral nor-
malizations are shown to be superior in ASR, there remains
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Figure 1: Proposed speech enhancement

some drawbacks. First of all, the VQ or GMMM codebook the-
oretically can not guarantee to cluster the training noisy speech
data to have an identical noise power level if the SNR measure-
ments are different and therefore the conditional Gaussian as-
sumption might be failed. Moreover, the codebook-dependent
piecewise transform can be generalized into actual non-linear if
we known the joint distribution. In this work, we proposed a
data-driven speech enhancement system, where the SNR mea-
surement is used to cluster or simulate the training data in or-
der to learn the enhancement filters. Furthermore, instead of
codebook-dependent piecewise transform, we use the empirical
estimators, which are derived as a general non linear transform
from noisy to speech data using the joint density or cumulative
density estimation. For the SNR estimation, a measurement
called SNRGMM, which has been developed in our previous
work, is used. In order to cover the waveform reconstruction,
the algorithm is done on the log-spectral magnitude domain. In
section2, we describe the data clustering or simulation by using
the SNRGMM index. Section 3 develops the empirical statis-
tical estimators for the enhancement filtering. Section 4 evalu-
ates the proposed method on AURORA2J database and section
5 summarizes the work.

2. SNR based data clustering for training
the enhancement filters

2.1. Data clustering

The block diagram of SNR based data clustering is in the left
side of Figure 1. Each collected noisy speech utterance is
passed into SNR estimation and then the training data is clus-
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Figure 2: SNRGMM estimation method

tered into SNR-dependent sub-data. Further more, the average
noise level, given from SNR estimation, is also pre-normalized
to 0dB. The reason of the use of utterance’s SNR but not in-
stantaneous SNR is explained by fact of that, this measurement
is more and consistent and robust. In fact, the non-stationary
noise reduction is done by the empirical estimators, which will
be described in next section. NRGMMHowever, the SNR-based
clustering should decrease the variance of the estimation and is
critically important. For the SNR estimation, we use a segmen-
tal SNR estimation method, called S, which has been developed
in our previous work [4] for the real conditions, when neither
signal nor noise reference nor the speech activity is available.

2.2. SNRGMM

The basic concept of the proposed method is fitting the distrib-
utions of noise and noisy speech in the log-power domain from
actual noisy speech signal, using the GMM modeling and EM
estimation. Denoting the segmental SNR in a notation of ex-
pectations as

SNRseg =

�
10 log10

PS

PN

�
= 〈10 log10 PS〉−〈10 log10 PN〉 ,

(1)
the segmental SNR is given through fitted distributions. When
the original SNR is high, the SNRGMM defined in (1) can be
approximated by the total to noise ratio, which is the expecta-
tion distance and noted by

TNRseg =

�
10 log10

PX

PN

�
= 〈10 log10 PX〉−〈10 log10 PN〉 ,

(2)
TNRseg = µX − µN , (3)

where µX > µN . Under low SNR conditions, this estimation
yields a significant error. For that case, a compensation mode
is proposed by denoting the SNR as a nonlinear moment of a
random variable of the local TNR which is noted by

SNRseg =

�
10 log10

�
PX

PN
− 1

��
. (4)

The local TNR is a difference of two Gaussian distributed ran-
dom variables and therefore is also assumed to be a Gaussian,

10 log10

PX

PN
∼ N

�
x, µX − µN , σ2

X − σ2
N

�
. (5)

By using an asymptotic expansion

ln (er − 1) ≈ r − 0.7e−r − 0.9e−2r − e−3r, (6)

the SNRGMM estimation is given as

SNRseg =
10

ln 10

��
	

m − 0.7 exp
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2

��
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− exp


−3
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2

��
�
� , (7)

where

m =
ln 10

10
(µX − µN ) , d =

�
ln 10

10

�2 �
σ2

X − σ2
N

�
. (8)

Table 1 shows experimental evaluation on AURORA2 database
for SNRGMM estimation. The SNRGMM, yields more accu-
rate and robust estimation with less standard deviation than the
conventional methods using VAD [5] or a raised cosine function
(NISTSNR) [6]. Note that, one more output of estimation is the
average noise level defined by muN and this measurement is
used to normalize the noisy speech in training database.

Table 1: Averaged estimation errors evaluated on AURORA2

SNR NISTSNR VADSNR SNRGMM

20dB 4.0±1.9 0.3±0.5 0.4±0.3
15dB 4.3±2.2 1.2±0.5 0.4±0.6
10dB 4.9±2.1 3.0±1.7 1.1±0.9
5dB 5.8±2.8 4.9±1.5 1.5±1.0
0dB 7.8±3.0 6.5±1.9 2.1±1.7
-5dB 11.2±3.1 10.1±2.8 3.1±1.9

2.3. Simulation mode

In real conditions, a pair of noisy and clean speech data (or
recorded at closed talking microphone) might not be available.
In these cases, we can use a noise sample to simulate this pair
data at each SNRGMM index. Given a clean speech and a ran-
dom noise sample, we first estimate the SNRGMM of their ad-
dition, then a weight coefficient, for multiplying the noise sam-
ple, is calculated by the given and initial SNRGMM. In our sys-
tem, we repeat this procedure three times to better fit the SNR
estimation. Note that, this simulation is quick and convenience
since SNRGMM can be estimated without knowledge of VAD.
We note that, this mode is able to train the enhancement filter in
even more wide band of SNR than the real collected data.

3. Empirical estimation for speech
enhancement

As it was mentioned above, the conventional data-driven ap-
proaches uses the codebook-dependent piecewise transform,
where the conditional Gaussian distribution of noisy feature in-
side each codebook [2] is assumed. Another direction, which
is investigated in this work, is the non-parametric learning of
the joint or cumulative distributions and the implementation of
statistical estimations in general, which can be considered as a
use of a ”continuous” code-book. Note that, the SNR cluster-
ing described in previous section, is a pre-normalization, which
should decrease the variances of the estimation. The training
for proposed system is in Figure 1. For each SNRGMM in-
dex, a pair data of noisy and clean speech is transformed into
STDFT domain, and then into phase and log-spectral magni-
tude. The empirical joint density is estimated in each sub-band
log-spectral magnitude domain.
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3.1. Joint density estimation

The histogram is simplest form of the density estimation and
from our experience, it can be in some cases, successfully
used to implement empirical statistical estimation for speech
enhancement. However, the histogram has various drawbacks
caused by sensitivity to the number and orientation of bins as
well as by the discontinuity. The told above make histogram
unsuitable to practical developments In this work we use a
Gaussian kernel for density estimation [7]. Denote the kernel
density of a vector x as

p̂ (x) =
1

N (2πh2)
p
2

N�
i=1

Kh (x,xi), (9)

where N , p and h are total number of examples, dimension and
bandwidth respectively. The Gaussian kernel is

Kh (x,xi) = e
− 1

2h2 (‖x−xi‖)2 . (10)

The bandwidth choice is given by the recommendation in [7]
and it gives h = 1.25

3.2. Joint density estimation based estimators

In contrast to the codebook-dependent piecewise transforma-
tion, we derive a general non-linear transformation from noisy
to clean feature (log-spectral magnitude), using the joint den-
sity. Both minimum mean square error (MMSE) and maximum
a posterior probability (MAP) estimations are implemented.
The empirical MMSE (EMMSE) estimation yields the condi-
tional expectation, which is expressed as

Ŝ = E [S|X ] =

∞�
−∞

Sp (S, X) d

∞�
−∞

p (S, X) dS

, (11)

where, the joint density p (X, S) is estimated in each sub-band
using the Gaussian kernel described in section 3.1. The estima-
tion (11) is implemented by numerical method, where the in-
finitive boundaries are changed to a finite ones, which are taken
from training. A discrete set of X and resulted Ŝ are saved in
memory to implement an empirical transform by interpolation.

Ŝ = g(X) (12)

Alternatively, the empirical MAP (EMAP) estimation is de-
noted by

Ŝ = arg max
S

p (S, X) . (13)

Analogously, an interpolation based transform is given for fur-
ther use in processing. One drawback of the joint density esti-
mation is the requirement of quite large number of training data.
In next section, we develop the alternative estimation method
based on one dimensional cumulative density of noisy and clean
speech. This method is shown to be able to apply with quite
small number of samples.

3.3. Cumulative histogram equalization

The CHEQ estimation finds a non-linear transform which maps
from the cumulative distribution function of the noisy feature to
the clean speech

Ŝ = g (X) = F−1
S (FX (X)) . (14)
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Figure 3: Example of EMMSE filters in sub-band f=1kHZ
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Figure 4: Example of EMAP filters in sub-band f=1kHz

Note that, the cumulative histograms are also given by using
Gaussian kernel as in section 3.1. Like in section 3.2, an in-
terpolation based transform is derived in each sub-band log-
spectral magnitude domain. The advantage use of CHEQ can be
listed as follows: (1) the monotonic form of CDF and cumula-
tive histogram makes the estimation to be unique and smoothed,
(2) the cumulative density can be estimated with small number
of data. Examples of EMMSE, EMAP, and CHEQ filtering in
the log spectral magnitude is shown in Figure 3,4 and 5, respec-
tively. The figures show that, the CHEQ enhancement filters are
more smooth than EMMSE and EMAP and it might be the rea-
son why the sound made by this method has less musical noise
level.

4. Experiments
The experiment are performed using English and Japanese ver-
sions of AURORA2 database. We use AURORA2 English ver-
sion [8] to learn the enhancement filters, and evaluate the pro-
posed enhancement methods on AURORA2J [9]. The data-
bases have the same noise conditions as the speakers and lan-
guages are independent. In the enhancement training, the total
noisy speech data are used, ignoring the original SNR index
The noisy speech data is clustered into six sub-data according
to the SNRGMM index of 20dB, 15dB, 10dB, 5dB, 0db and
-2dB. The last index is explained by a bias of SNRGMM esti-
mation under negative true SNR. For each noise condition and
given sub-data index, the EMMSE, EMAP and CHEQ enhance-
ment filters are trained using the joint or cumulative density of
noisy and clean speech in each sub-band log-spectral magnitude
domain. As for the ASR feature extraction, we use a 25ms ham-
ming window length and 10 ms window shift for the STDFT. In
the evaluation, the noisy speech is indexed by the SNRGMM
estimation and is switched to the nearest filter set in the mean-
ing of SNRGMM. In the simulation mode, only the noise sam-
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Figure 5: Example of CHEQ filters in sub-band f=1kHz

ple from AURORA2 data is used. We use more sub-classes in
terms of 10 SNRGMM indexes to simulate the noisy speech
data for training. The enhancement filters is then trained and
applied as in the clustering mode. For the CHEQ filtering, one
more set of enhancement filters are trained using a smaller num-
ber of samples training (CHEQS). For that case, only 50 utter-
ances are used to train the enhancement filter at each SNRGMM
index. The enhanced speech data is tested in both the SNR
improvement and ASR performances. Speech recognition ex-
periments are performed on the digit recognition task [8]. The
digit HMMs are the standard complex back-end models of 16
states and each state has a 20 components Gaussian mixture
with diagonal covariance matrix. The training process is carried
out at each front-end before training. The experiment shows
the significant improvement of proposed systems in both mea-
surements. Among the estimation methods, the CHEQ are per-
formed best at the speech recognition with approximate 62 per-
cents in clean training and 41 percents of relative improvement
in multi-conditional training, while the EMMSE is better in the
SNR improvement with approximately 8dB of SNR improve-
ment. Unlike in the model based approaches, the empirical
MAP performed worse than EMME and CHEQ and it can be
explained by the getting errors of the maximizing operation
across spiked histograms. In other words, for the data driven
approaches, the EMMSE and CHEQ is more preferable to use.
The proposed system with CHEQ method overcomes the ad-
vance ETSI front-end [10] where the overall results of relative
improvements are 59.09 and 36.08 percents for clean and multi-
condition trainings, respectively. Note that, the SPLICE-like
algorithm [2], is implemented by authors, in the log-spectral
magnitude domain and it yields the overall results of 60.36 and
38.56 percents respectively. Note that, the simulation mode per-
formers better than the clustering mode and it can be explained
by the use of more set of SNR-dependent training data. One
more thing is that the CHEQ produces less musical noise in
the enhanced speeches than EMMSE and EMAP and is also
superior to the model-based approaches in the sound quality,
expecially for the restaurant, subway and exhibition noise con-
ditions.

5. Conclusions
We present a data driven speech enhancement system based on
SNR-dependent emprirical statistical estimators. This method
uses the estimated SNR and noise level in utterance duration,
to normalize and cluster the training data into SNR-dependent
sub-data in order to learn the enhancement filters. The empir-
ical statistical estimators are derived using the non-parametric
learning of the joint or cumulative density. This method can be

considered as a continous codebook-dependent transform ver-
sus the conventional discrete codebook- dependent piecewise
transform. In future work, we intend to develop a system with
an on-line SNRGMM measurement, which is applicable for the
real-time processing.

Table 2: SNR improvement: evaluation on AURORA2J, [dB]
Learning mode EMMSE EMAP CHEQ CHEQS

Clustering mode 8.03 6.16 7.27 7.35
Simulation mode 8.43 7.69 8.20 8.15

Table 3: Relative ASR performance of clean training: evalua-
tion on the AURORA2J
Learning mode EMMSE EMAP CHEQ CHEQS

Clustering mode 61.85% 50.44% 62.78% 62.07%
Simulation mode 62.32% 52.33% 62.98% 62.85%

Table 4: Relative ASR performance of multi-condition training:
evaluation on the AURORA2J
Learning mode EMMSE EMAP CHEQ CHEQS

Clustering mode 23.79% 20.24% 32.78% 32.12%
Simulation mode 25.65% 28.32% 41.06% 40.17%
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