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1. Introduction 
 
Independent component analysis (ICA) or blind source 
separation (BSS) is a method for recovering a set of 
statistically independent signals from the observation 
of their mixtures without any prior knowledge about 
the mixing process. It has been receiving a great deal 
of attention from various fields as a new signal 
processing technique. In this talk I would like to focus 
on an approach to BSS for sound signals. 

Blind separation of sound signals has a lot of 
(potential) applications: voice control of personal 
computers, noise canceling in vehicles, robots’ ears, 
hand-free telephone systems, hearing aid instruments, 
sound source tracking, etc. In order to realize these 
applications we need to pay attentions to some 
particular aspects which are characteristic of sounds 
signal processing. 
(1) On-line algorithm 
In view of the level of complexity, the mixing process 
can be classified into two types: instantaneous mixture 
and convolutive mixture. While early works for BSS 
dealt with the former type, recent works are mainly 
concerned with the latter type, which is much more 
difficult from theoretical as well as computational 
points of view. In the case of sound separation the 
mixing process must be deal with as a convolutive one, 
of course. 
    An approach to BSS for convolutive mixture is to 
transform raw sound data into a set of frequency 
components, using a filter bank, and to apply some 
instantaneous BSS method to each component. 
However, such methods are not suitable for on-line 
processing, which is requisite of realistic applications 
of sound separation. Moreover, those methods suffer 
from the problem of permutation. In this sense the 
time-domain algorithms are more convenient than the 
frequency-domain ones. The algorithm I would like to 
address in this talk adopts a completely time-domain 
approach. 
(2) Preservation of sound quality 
Inherently BSS has an indeterminacy. Given a data set 
produced by a mixing process, since any linear 
transform of a source signal can also be considered a 
source signal, there exist an infinite number of valid 

separators that extract the source signals. In the case of 
instantaneous mixture the indeterminacy it is not so a 
serious problem because it is just a scaling problem. 
However in the case of convolutive mixture it cannot 
be overlooked because indeterminacy increases up to 
filtering indeterminacy. Particularly in the case of 
sound separation, it is concerned with quality of 
separated sounds. 

In the next section I would like to address a 
particular type of normalization principle for the 
separator, which we call minimal distortion principle 
(MDP). Among the set of valid separators the principle 
chooses the separator such that its output be the least 
subject to distortion. Separators based on this principle 
have some favorable features, particularly for sound 
separation. First, separation can be attained without 
inducing the temporal whitening of the observed 
signals. Second, the obtained separator is free of 
fluctuation even for such a nonstationary signal as 
speech. 
(3) Robustness 
In the authors’ experience, although most conventional 
methods for BSS are able to achieve separation for 
artificially synthesized data, they do not necessarily 
work well for real-world data. The results of separation 
are often unsatisfactory and, what is worse, they 
sometimes suffer from incomprehensible 
computational instability. We are often faced with the 
following phenomenon: when applying an iterative 
ICA algorithm to a data set, the algorithm appears to 
behave in a desired manner in the beginning of the 
iterative calculation, but suddenly some instability 
occurs. 
    Although a lot of reasons are conceivable, in 
section 3 we discuss the instability induced by the 
singularity of the mixing matrix, which is often 
neglected but occurs frequently. Namely, we consider 
the case that the frequency response of the mixing 
process becomes almost singular at some part of 
frequency range. The task of ICA is basically to find 
the inverse of the mixing matrix and to apply it to the 
observation. So, if the mixing matrix is nearly singular 
in some frequency ranges, then the norm of the 
demixing matrix becomes very large and some 
numerical instability can occur. Even if the inverse has 



been obtained successfully, the separator obtained 
becomes too sensitive to the noise that contains the 
frequency components for which the norm of the 
demixing matrix is very large. 

In blind separation of speech signals, if the 
microphones are located close to each other, the 
mixing matrix, i.e. the transfer function matrix from 
the speakers to the microphones, becomes almost 
singular, particularly for low frequencies. Conventional 
methods for ICA usually neglect such a problem. 
(4) Actual implementation 
To realize BSS for real-world data, many other aspects 
must be considered such as the computational cost. 
Also we need to take into account the case that the 
number of the sources is not constant and unknown. 
 
2.  Minimal Distortion Principle 
 
Let us consider a situation where statistically 
independent random signals si(t) (i = 1,…, N) are 
generated by N sources and their mixtures are observed 
by N sensors. It is assumed that every source signal 
si(t) is a stationary random process with zero mean, 
and the sensors’ outputs xi(t) (i = 1,…, N) are given by 
a linear mixing process: 

0
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It is known that, in order to realize BSS, at most one 
source signal is allowed to be Gaussian. 

To recover the source signals from the sensor 
signals, we consider a demixing process or separator of 
the form 
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τ

τ
∞

=−∞
= − =∑y W x W x . (2) 

If the mixing process A(z) is known beforehand, the 
source signals can be recovered by setting as W(z) = 
A−1(z), of course. Essential difficulty in BSS is that 
A(z) or A−1(z) must be estimated from the observed 
data x(t) only. Besides, the impulse response { τW } 
might need to take a noncausal form in general, i.e., 

τW ≠ O (τ < 0). 
    Inherently BSS has two kinds of indeterminacy.  
One is the indeterminacy in the numbering of the 
sources and the other is that in the scaling or filtering. 
The latter indeterminacy is more essential and is 
considered here. If s1(t) ,…, sN(t) are source signals, 
their arbitrarily linear-filtered signals e1(z)s1(t) , …, 
eN(z)sN(t) can also be considered source signals 
because they are also mutually independent. The 
mixing process is then A(z)diag{e1

-1(z),…,eN
-1(z)}. 

    Due to this indeterminacy we can consider any 
separator of the following form a valid separator: 

1( ) ( ) ( )z z z−=W D A ,  (3) 
where ( )zD  is an arbitrary nonsingular diagonal 

matrix; ( )zD { }diag ( )id z= . If the separator is valid, 
each of the source signals appears at an output terminal 
of the separator, though it is subjected to a linear 
transformation ( )id z . 
    In the case of instantaneous mixture the 
indeterminacy is usually considered unsubstantial, but 
in the case of convolutive mixture it cannot be 
overlooked in view of actual implementations and 
applications of BSS. In the set of valid separators the 
following separator has a special meaning: 

* 1( ) diag ( ) ( )z z z−⋅W A A� .   (4) 
We call this separator the optimal (valid) separator. The 
optimal separator can be characterized by either of the 
following two propositions. 
Proposition 1:  The optimal separator * ( )zW is a 

valid separator that minimizes 2( ) ( ) ( )z z z−W A A . 
Proposition 2:  The optimal separator * ( )zW  is a 

valid separator that minimizes 2( ) ( )E t t − y x . 

These two propositions state the minimal distortion 
principle in two manners. Namely, the optimal 
separator is determined such that the overall transfer 
function ( ) ( )z zW A  be as close to ( )zA  as possible, 
or equivalently the separator’s output y(t) be as close 
to x(t) as possible. The optimal separator is ‘optimal’ in 
the sense that the separator’s output is the least subject 
to distortion among all the valid separators. 
    The optimal separator has some properties that are 
favorable in actual implementation of BSS: 
(i) The separator’s output then becomes 

( )t =y 1diag ( ) ( ) ( ) ( ) diag ( ) ( )z z z t z t−⋅ = ⋅A A A s A s . This 
implies that output ( )iy t  is ( ) ( )ii ia z s t , which is the 
i-th source that would be observed at the i-th sensor 
when there were no other source signals. This property 
will be convenient for interpretation of the signals 
separated and later processing. 
(ii) The optimal separator does not depend on the 
properties of the sources; it depends on the mixing 
process ( )zA  only. So, even for such nonstationary 
signals as voices, the optimal separator is invariant 
with time as long as the mixing process is fixed. This 
property helps to enhance the stability of the algorithm, 
compared to the one proposed in [1]. 
(iii)  In actual implementation the separator is usually 
embodied with an FIR filter. Then, it is desirable that 
the filter’s degree (length) is as low as possible. MDP 
determines a valid separator such that its output 
becomes as close to the input as possible. So, it can be 
expected that the (FIR) separator will be realized with 
a relatively short filter length though not the shortest. 

The optimal separator can also be characterized as 
a direct constraint on matrix ( )zW . 



Proposition 3: The optimal separator * ( )zW  is a 
valid separator that satisfies 

1diag ( )z− =W I .   (5) 
Including the pioneering work by Herault and Jutten 
some studies on BSS have considered a separator of 
feedback structure; 

( ) ( ) ( ) ( )t t z t= −y x W y ,  (6) 
where ( )zW  is a matrix whose diagonal elements are 
all zeros. This is equivalent to putting ( )zW  

( ) 1
( )z

−
= +I W  in a feedforward-type separator, 

leading to 1( )diag z−W = I . So, the present 
normalization itself is not a new idea. What we want to 
stress is that the constraint (5) can be derived from the 
minimal distortion principle (Propositions 1 and 2). It 
is hard to design a feedback-type separator so as to 
guarantee its stability, particularly for non-minimum 
phase mixing processes. Using the following 
proposition, we can incorporate the constraint (5) 
easily in a multi-dimensional FIR filter, which is 
guaranteed to be stable. 
    We have further 
Proposition 4: The optimal separator is a valid 
separator that satisfies 

( )diag ( ) ( ) ( )TE t t t τ − − = y x y 0  (7) 

for every τ. 
This characterization of MDP is important for actual 
implementation of MDP. 

In actual implementation of MDP the separator 
needs to be embodied by a FIR filter as 
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where 3 1 22L L L= + . The first term of the equation 
comes from the algorithm in [2] and the second term 
attains MDP. 
    In the above algorithm the computation time 
increases in proportion to L3

2. With a slight 
modification we can reduce the computation cost 
considerably. The following algorithm allow for the 
computation time of order L3. 
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where 0 1 2L L L+� . 
 

3.  ε-Minimal Distortion Principle 
 
Although the idea of the normalization based on MDP 
seems to be natural, it has a serious problem in 
common with other conventional algorithms for BSS. 
Namely, when the mixing matrix is almost singular, 
the norm of the separating matrix becomes very large 
and it can induce some numerical instability. 

In this section, so as to solve the singularity 
problem, we introduce a generalized form of the 
original MDP, which we call ε-MDP. Based on ε-MDP, 
we derive a new ICA algorithm, in which a kind of 
regularization term is incorporated so as to obtain a 
certain robustness. Roughly speaking, it determines the 
separator such that its gain be sufficiently small at 
frequencies for which the mixing matrix is singular or 
almost singular. 

Since there is an indeterminacy in the definition 
of the mixing process, the words “the mixing matrix is 
almost singular” is somewhat ambiguous. To eliminate 
the ambiguity we introduce a normalized form of the 
mixing process as follows. (A1) The source signals are 
white signals with zero mean and unity variance; (A2) 
Sensor signal ( )ix t  has been scaled to be of order 
unity. On these assumptions we want to give a 
definition about the singularity of the mixing process.  
Although it might not be mathematically rigorous, it is 
enough for the present purpose. Let the i-th row of 

1( )z−A  be ( )i zb . We say that the mixing matrix 
( )zA  is almost singular with respect to source i if 
( )i zb  is very large. 

Let * ( )i zw be the i-th row of * ( )zW , then we 
have * ( ) ( ) ( )i ii iz a z z=w b . This implies that if A(z) is 
almost singular with respect source i, the norm of 

* ( )i zw  becomes very large. This can cause instability 
when we execute an algorithm for BSS. Moreover, 
even if separation has been attained successfully, the 
separator obtained becomes very sensitive to noise. 
Suppose that the sensors’ signals are corrupted with 
noise d(t). Then the output of the separator becomes 

*

*

( ) ( )( ( ) ( ) ( ))

( ) ( ) ( ) ( ).
i i

ii ii i

y t z z t t

a z s t z t

= +

= +

w A s d
w d

    (12) 



So, when ( )i zb  and hence * ( )i zw  are very large, 

( )iy t becomes undesirably sensitive to noise. 
To overcome these problems we extend the 

optimal separator as 
** 1

*

( ) ( )diag ( ) ( )
( ) ( )

z z z z
z z

−⋅

=

W C A A
C W

�
 (13) 

where C(z) is a diagonal matrix defined as 

( ){ } 11( ) diag ( ) ( )Hz z zε
−− −= +C I A A   

1diag
1 ( ) ( )H

i iz zε
 

=  + b b
    (14) 

and ε is a small positive constant. We call this 
separator the ε-optimal separator. The ε-optimal 
separator is obviously valid, and the special case of 

0ε =  reduces to the original optimal separator.  
Although the ε-optimal separator has lost some of the 
favorable properties held by the original optimal 
separator, it should be noted that the diagonal entries 

( ){ } 1
1 diag ( ) ( )H

i iz zε
−

+ b b  of C(z) are zero-phase 

filters. It implies that every frequency component in 
the output of the ε-optimal separator receives no phase 
shift relative to that in the output of the optimal 
separator. An important property of the ε-optimal 

separator is that 
2** 1( ) (1)i z o

ε
w ∼ . Namely, **( )i zw  

never exceeds a finite value of order 1 ε  (even 
for ( )i z →∞b ). 

The ε-optimal separator can be characterized in 
similar ways to the original optimal separator. 
Proposition 5:  The ε-optimal separator is a valid 
separator that minimizes 

2 2( ( )) ( ) ( ) ( )Q z E t t zε ε − + W y x W� .  (15) 

Term 2( )zε W  is a kind of regularization term, 
which is often introduced in certain types of ill-posed 
optimization problems. We refer to the normalization 
based on minimization of ( ( ))Q zε W  as ε-MDP.  
Corresponding to Proposition 2, we have 
Proposition 6:  The ε-optimal separator is a valid 
separator that satisfies 

( )diag ( ) ( ) ( )T T
k

k

E t t t τ ττ ε +
  − − + =   

∑y x y W W O . 

                                    (16) 
A similar algorithm to (11) can be derived by this 
proposition. 
 
4. An Experiment 
 
Many attempts have been made to perform BSS for 

mixed voice signals. As far as we know, however, 
every experiment reported until now deals only with 
data taken in a very limited situation. Most of them 
treat artificially mixed sounds on a computer and 
assume rather simple mixing processes. In a real 
situation, however, since echo effect cannot be 
neglected, the mixing process has a very long time lag; 
the reverberation time is as many as a hundred 
milliseconds. It implies that, if we implement the 
separator with a FIR filter, we need around one 
thousand taps when the sampling rate is 10 kHz. 

Even in the reports dealing with ‘real’ data, the 
number of sound sources is usually two or three. It is 
very doubtful that the algorithms employed there work 
as well for a larger number of sound sources. Here we 
show a challenge to a much more difficult task; blind 
separation of eight sounds acquired in an ordinary 
office room. 

We applied the proposed algorithm to 8 sound 
signals taken by 8 microphones at 10kHz sampling 
frequency. The source sounds were 8 voices of ‘a’ 
woman which were provided by eight loudspeakers. 
Since the length of the filter was 801 
( 1 2200, 600L L= = ), totally 64 x 801 parameters had 
to be estimated to obtain a desired separator. The 
recovered sounds were considerably clear, which will 
be shown at the Workshop. 

A remaining serious issue is that it takes a very 
long time to complete the calculation. In the case of 
two or three voices the algorithm can be executed in 
real time, but cannot in the case of 8 voices as yet. 
Hardware implementation is a future work. 
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