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ABSTRACT

In this paper we consider optimal estimators for speech enhance-
ment in the Discrete Fourier Transform (DFT) domain. We de-
rive an analytical solution for estimating complex DFT coefficients
in the MMSE sense when the clean speech DFT coefficients are
Laplacian distributed and the DFT coefficients of the noise are
Gaussian or Laplacian distributed. We show that these estimators
have a number of interesting properties. Compared to previously
proposed estimators, which are based on Gamma speech priors,
the estimators based on Laplacian speech priors have a simpler
analytic form.

1. INTRODUCTION

Many of the known speech enhancement algorithms which operate
in the Discrete Fourier Transform (DFT) domain [1, 2, 3] assume
that the real and imaginary part of the clean speech DFT coeffi-
cients can be modelled by a Gaussian density. The Gaussian as-
sumption is valid when the DFT frame size is much longer than
the span of correlation of the signal under consideration [4]. In
this case the central limit theorem may be invoked and Gaussian-
ity may be assumed.

For speech signals and the typical DFT frame sizes used in
mobile communications, this assumption is not well fulfilled. This
has been recognized, e.g., by Porter and Boll [5] who proposed
a heuristic method to construct approximately optimal estimators
from given clean speech material. It was also shown in [6] that
DFT coefficients of clean speech might be better modelled by a
Gamma or a Laplacian distribution when the DFT frame length
is in the range of 10-100 ms. The assumption of Gamma speech
priors, which was used in [6], leads to estimators which use spe-
cial functions like the hypergeometric function or Bessel func-
tions. In this paper we will investigate another supergaussian den-
sity, namely the Laplacian density, as a model for the clean speech
DFT coefficients. We present analytical solutions for the MMSE
estimation of complex DFT coefficients with Laplacian speech pri-
ors and Gaussian or Laplacian noise priors. These estimators do
have similar properties as the estimators based on Gamma densi-
ties. However, they are easier to compute and to implement.

The remainder of this paper is organized as follows: In the
next Section we will briefly describe the signal models used in
this work. Section 3 presents the new MMSE estimators for our
models of speech and noise. Finally, in Section 4 we will discuss
experimental results.

2. STATISTICAL MODELS IN THE DFT DOMAIN

In what follows we consider a bandlimited, sampled noisy speech
signal y(i) which is the sum of a clean speech signal s(i) and a
disturbing noise n(i), y(i) = s(i) + n(i). i denotes the sampling
time index. We further assume that s(i) and n(i) are statistically
independent and zero mean. The noisy signal y(i) is transformed
into the frequency domain by applying a window h(i) to a frame
of L consecutive samples of y(i) and by computing the DFT of
size L on the windowed data. Before the next DFT computation
the window is shifted by R samples. This sliding window DFT
analysis results in a set of frequency domain signals which can be
written as

Y (λ, k) = S(λ, k) + N(λ, k) =
L−1X

µ=0

y(λR + µ)h(µ)e−j2πkµ/L

(1)
where λ is the subsampled time index, λ ∈ Z, and k is the fre-
quency bin index, k ∈ {0, 1, ..., L − 1}, which is related to the
normalized center frequency Ωk of the k-th bin by Ωk = 2πk/L.
Furthermore, to facilitate our notation and to avoid additional nor-
malization factors we assume

PL−1
µ=0 h2(µ) = 1. In a mobile

communications application, we typically use a sampling rate of
fs = 8000 Hz and a Hann window of length L = 2R = 256.

2.1. Statistical Models

It is well known that the probability density function (pdf) of speech
samples in the time domain is much better modelled by a Lapla-
cian or a Gamma density rather than a Gaussian density [7]. We
note that also in the short term DFT domain (frame size < 100
ms) the Laplace and Gamma densities are much better models for
the pdf of the real and imaginary parts of speech coefficients than
the commonly used Gaussian density [6]. In this section we will
introduce our notation and briefly review these densities.

Let SR = <{S(λ, k)} and SI = ={S(λ, k)} denote the
real and the imaginary part of a clean speech DFT coefficient, re-
spectively. To enhance the readability of the following results we
will drop both the frame index λ and the frequency index k and
consider an individual speech DFT coefficient S = SR + jSI

at a given time instant. Then, the Gaussian and the Laplacian
prior densities (real and imaginary parts) can be defined as fol-
lows, where σ2

s/2 denotes the variance of the real and imaginary
parts of the clean speech DFT coefficients.
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Similar probability densities can be defined for the DFT coeffi-
cients of the noise. In order to find closed form solutions to the
estimation problems we must assume that the real and the imagi-
nary part are independent. By computing the mutual information
between the real and the imaginary part, we found that the depen-
dency between the real and the imaginary part is weak. Thus, this
assumption is justified.

3. MMSE ESTIMATORS

Because of the assumed independence of the real and the imagi-
nary parts of DFT coefficients, the MMSE estimator for the com-
plex DFT coefficients can be split into the estimators for the real
and the imaginary parts which can be treated independently,

E{S | Y } = E{SR | YR} + jE{SI | YI} . (4)

Again we have dropped the time and frequency indices. Based on
the above distribution models, we will now develop MMSE esti-
mators for the clean speech coefficients.

3.1. Gaussian Noise and Gaussian Speech Model

It is well known that when both the noise and the speech coeffi-
cient pdf is a complex Gaussian, the optimal estimator is linear
(Wiener filter), i.e.,

bS = E{S | Y } =
σ2

s

σ2
s + σ2

n

Y =
ξ

1 + ξ
Y , (5)

where σ2
s and σ2

n are the mean of |S|2 and |N |2 , respectively.
ξ = σ2

s/σ2
n denotes the a priori signal-to-noise ratio (SNR).

3.2. Gaussian Noise and Laplace Speech Model

We now derive the MMSE estimator for the complex DFT coeffi-
cients of clean speech when the speech prior is Laplace distributed
and the noise is modeled by a Gaussian pdf.

To facilitate the development we introduce the shorthand no-
tations
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(6)

For the Laplacian speech prior we obtain the optimal MMSE
estimator of the real part [8, Theorem 3.462,1]
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with [8, Theorem 3.322,2]
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where erfc(z) denotes the complementary error function [8, Theo-
rem 8.250]. The optimal estimator for the imaginary part is derived
in the same fashion.

E{SR | YR} =
σn [LR+ exp(2YR/σs)erfc(LR+) − LR− exp(−2YR/σs)erfc(LR−)]

exp(2YR/σs)erfc(LR+) + exp(−2YR/σs)erfc(LR−)

=
σn

ˆ
LR+ exp(L2

R+)erfc(LR+) − LR− exp(L2
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˜
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(9)

E{SI | YI} =
σn [LI+ exp(2YI/σs)erfc(LI+) − LI− exp(−2YI/σs)erfc(LI−)]
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(10)



The optimal estimator for the complex speech coefficient is
therefore given by E{S | Y } = E{SR | YR} + jE{SI | YI}
with E{SR | YR} and E{SI | YI} given in (9) and (10), re-
spectively. We note that both E{SR | YR} and E{SI | YI} are
odd symmetric functions of YR and YI , respectively. The function
erfcx(x) = exp(x2)erfc(x) is known as the scaled complemen-
tary error function and is available, e.g., in MATLABTM. Figure
1 plots the resulting estimate for 0 ≤ YR ≤ 5, σ2

s + σ2
n = 2,

and three different a priori SNR values. For high a priori SNR
values the estimate is almost identical to the estimate delivered
by the Wiener filter. Very little signal distortion occurs. For low
SNR values the new estimator is highly non-linear. An interesting
feature of the new estimator is that it provides significantly less at-
tenuation to the noisy input coefficient than the Wiener filter when
the input coefficient is several times larger than its standard devi-
ation. Given the heavy tailed speech prior, it is very likely that
speech is present in this case. For small input values the new esti-
mator delivers more attenuation than the Wiener filter. These two
characteristics which were also observed for the estimators devel-
oped in [6], both contribute to the improved SNR of the output
coefficients with respect to the linear estimator. It is interesting to
see that these properties follow nicely from the assumed statistical
model.
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3.3. Laplacian Noise and Speech Models

When both the real and the imaginary components of the noise
and the speech coefficients can be modelled by a Laplacian pdf,
the optimal estimator of the real part is given by (σn 6= σs)
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For σn 6= σs we obtain
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and for σn = σs we have

E{SR | YR} =
YR
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(15)

which is identical to the Wiener solution. Analogous relations can
be derived for the imaginary part. The attenuation characteristics
of this estimator is shown in Figure 2. For an SNR greater than 0
dB the characteristics is similar to the characteristics of the Gaus-
sian noise case as shown in Figure 1. For an SNR smaller than 0
dB the estimator delivers an almost constant output value which is
almost independent from the actual input value. This feature of the
attenuation characteristics has a profound influence on the natural-
ness of the perceived residual noise. In the low a priori SNR case,
fluctuations in the input coefficients will have little effect on the
estimated DFT coefficients. Therefore, as listening tests show, the
appearance of “musical noise” is less pronounced than with other
estimators.

4. EXPERIMENTAL RESULTS

The proposed estimators are implemented in MATLAB and em-
bedded into a standard DFT based speech enhancement program
with L = 2R = 256. The a priori SNR is estimated using the
“decision directed” approach of [2]. We evaluate the newly de-
rived estimators on a speech data base with 6 different speakers
and 3 minutes of speech. Computer generated stationary Gaussian
noise as well as prerecorded car noise is added at several SNR lev-
els. When the computer generated Gaussian noise is used, its vari-
ance is assumed to be perfectly known. To determine the variance
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of the slightly non-stationary car noise a Minimum Statistics noise
estimator is employed [9, 10]. The results are presented in terms
of the segmental SNR before and after the processing. Speech
pauses are excluded from the computation of the segmental SNR.
Table 1 shows the results of processing the noisy speech with ei-
ther the Wiener filter (case Gaussian/Gaussian), the MMSE esti-
mator with a Gaussian noise pdf and a Laplace speech pdf (case
Gaussian/Laplace), or the Laplacian noise model and the Lapla-
cian speech model (case Laplace/Laplace). The application of the
Gaussian/Laplace estimator results in a consistent improvement of
the measured segmental SNR. Using the Laplace/Laplace estima-
tor improvements are only obtained for the high a priori SNR con-
ditions, however, as listening tests confirm, no “musical noise” is
audible.

noise/speech Gaussian noise: SNR car noise: SNR
model 0 dB 10 dB 20 dB 0 dB 10 dB 20 dB

Gaussian/Gaussian 7.33 14.09 21.73 6.65 13.97 20.90
Gaussian/Laplace 7.68 14.47 22.13 6.86 14.22 21.19
Laplace/Laplace 6.91 13.98 21.78 6.14 13.84 20.95

Table 1. Segmental SNR in dB for our speech and noise models
before (0, 10, 20 dB) and after enhancement.

5. CONCLUSIONS

In this contribution we have derived two new estimators for speech
enhancement in the DFT domain. Experimental results show that
these estimators provide consistently better results than the well
known linear estimator (Wiener filter), either in the sense of an
improved segmental SNR (case Gaussian/Laplace) or in the sense
of better quality of the residual noise (case Laplace/Laplace). We
found that the estimator based on Laplacian speech and noise pri-

ors is especially attractive: It has an simple analytical form which
requires only the evaluation of exponential functions and does not
produce “musical noise”.

Finally, we note that the proposed model densities may be also
used to derive “soft-decision” weighting functions [1] Λ(λ,k)

1+Λ(λ,k)

and 1
1+Λ(λ,k)

where Λ(λ, k) denotes the generalized likelihood
ratio,

Λ(λ, k) =
(1 − q(λ, k))

q(λ, k)

p(Y (λ, k) | H(1)(λ, k))

p(Y (λ, k) | H(0)(λ, k))
. (16)

q(λ, k) is the a priori probability of speech absence, and H(0)(λ, k)
and H(1)(λ, k) are the hypotheses of speech absence and pres-
ence, respectively. Results on estimators which incorporate these
soft-decision estimators will be included in a future paper [11].
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