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ABSTRACT

In this paper analysis of an adaptive filter algorithm for
the feedback-type active noise control (ANC) system with
online feedback path modeling using a dither signal is pre-
sented. The same method is used for anlysis of the adaptive
filter algorithm in hearing aids. In these systems there is
an adaptive filter in the feedback path so that the con-
ventional method for analysis does not work. A special
frequency domain method is devised. It is based on the
averaging method and the frequency domain expression of
the adaptive algorithm with the causality constraint. The
convergence conditions are derived for both problems and
a bias expression of the weights for the latter problem is
presented. The positive realness of the transfer function of
the optimal predictor of the incoming signal is required for
stability. Finally, the convergence condition and the bias
are explicitly given for simple examples and their validities
are shown by some simulations.

1. INTRODUCTION

The adaptive filter algorithm in the feedback-type active
noise control (ANC) system has been first analyzed in [1].
In this system an adaptive filter is operating in the feedback
path so that the conventional method for analysis does not
work. In [1] a method has been devised which is a com-
bination of the averaging method and a frequency domain
expression of the algorithm to obtain a local stability (con-
vergence) condition. As is well known in the feedforward-
type ANC system, the convergence is guaranteed by the
so-called 90° condition [2]. The corresponding condition
has been derived in [1]. It depends on the optimal predic-
tion filter of the incoming noise to be reduced as well as the
transfer functions of the feedback path and its estimate.

On the other hand, several schemes have been proposed
in the feedforward ANC system to estimate the secondary
path on-line by injecting a dither signal [2]. In this paper,
a similar scheme is considered but in this system two adap-
tive filters are operating in the feedback paths so that the
stability of the total system is not obvious. By applying the
above frequency domain technique the local stability condi-
tion is derived in terms of the prediction error filter of the
noise.

As for hearing aids, there is an acoustic feedback path
from the receiver to the microphone and this causes annoy-

ing effects such as whistling and howling. An adaptive filter
is used to model the acoustic feedback path. But, again it
is in the feedback path so that the stationary point of the
adaptive filter is biased from the true feedback path trans-
fer function. In [3] based on the time domain approach, an
approximate expression of this bias in the weight vector of
the adaptive filter has been derived by assuming that it is
very small. Here, again via the frequency domain approach
we derive a corresponding expression of the bias in terms
of the prediction error filter of the incoming signal to the
hearing-aid. The stability condition is also derived.

2. ANALYSIS OF THE FEEDBACK-TYPE ANC
WITH ON-LINE MODELING OF THE
FEEDBACK PATH

In the feedback-type ANC system the incoming noise is
picked at the microphone and from the loud speaker a con-
trol signal is added to reduce the noise level. Also, for
on-line modeling of the feedback path transfer function, a
dither signal is injected. A block diagram of the feedback-
type ANC system in [2] which was analyzed in [1] is shown
in Fig.1 where d(n) is a stationary noise with zero mean and
the spectral density P(z) and S(z) is the transfer function
of the feedback path. The adaptive filter denoted by W (z)
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Fig. 1. Block diagram of the feedback-type ANC system.

is used for prediction of d(n) through S(z) but the fixed
estimate S(z) of S(z) is used for updating the weights of
the adaptive filter via the Filtered-X LMS algorithm. Fig.2
shows the block diagram of the ANC system treated in this
paper where an additional adaptive filter denoted by S(z)
is introduced for on-line modeling of S(z) with a dither sig-
nal v(n) which is an artificially generated white noise with
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zero mean and the variance o2. The weights of the adaptive

d(n)
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Fig. 2. Block diagram of the feedback-type ANC system
with on-line modeling of the feedback path.

filters W (z) and S(z) are updated by the Filtered-X LMS
algorithm and the LMS algorithm, respectively.

The signals d(n), e(n), es(n), ew(n), z(n), z'(n),u(n),
v(n) are defined in Fig.2 and the weights of the adaptive fil-
ters W (z), S(z) are {wi(n)}(i=0,---, Nuw—1),{8:(n)}(i =
0,---, Ns—1), respectively. The tap weight vectors are up-
dated by the LMS-type algorithm as

w(n+ 1) = w(n) + pou(n)ew(n) (1)
3(n+1) = 8(n) + pov(n)es(n) 2)
where N-dimensional vectors w(n), $(n),u(n) are defined
by
w(n) = [wo(n), -+, wn,—1(n),0,---,0]"
8(n) = [30(n), -~ , 4n,-1(n).0,--- 0] 3)
w(n) = [u(n), - ,u(n — Ny —1),0,---,0]"

and z(n), x’'(n), e(n), d(n), v(n) are defined similarly. Also,
s is a tap weight vector corresponding to S(z). Padding
some zeros in (3) is required to keep the causality of the

adaptive filters W (z), S(z) when the analysis is done in the
frequency domain and N is taken as N > 2max(Ny, Ns)[1].
From Fig.2 we have

ew(n) = —es(n) = d(n) — s@a’(n) + (8(n) — 8)®v(n) (4)

where “®” denotes the convolution. Since z'(n) = w(n)®
x(n),

ew(n) = d(n) — @' (n)(s@w(n)) + v’ (n)As(n)  (5)

where “t” denotes the complex conjugate transpose and
As(n) = 8(n) — 8. Let the N x N DFT (discrete Fourier
transform) matrix be

()

and the N-point DFTs of w,s,8,d,e,z, ', u,v _are de-
noted by the corresponding capital letters as W, S, S, D, E,

k=01, ,N—1

X,X' U,V, that is, W = Fw etc. Noting the identity
F'F = NI, from (5) we have

ew(n) ~ d(n) — %Xf(n)AsW(n) + %VT(n)AS(n) 6)
where Ag is a diagonal matrix given by
As :diag [30731,--' ,SN—l] (7)

where S; is the i-th element of S. Similarly Aw (), Ag are
defined. From Fig.2 other signals are expressed as

E(n) = D(n) — A5 (X'(n) + V(n)) ®)
X'(n) = Ay X (n), Uln) = A%, X ()
where “x” denotes the complex conjugate. Also, from Fig.2

X (n) = E(n) + A X' (n) + Ay, V(n)

9
Then, X (n) is given by
X(n) = Q(n)D(n) + Q(n)AxsV (n) (10)
where Q(n) is defined by Q(n) = [I — Ajy(yAhs] " - Ap-
plying F' to (1) and (2), we have
W(n+1) =W(n) + puU(n)ew(n) (11)
S(n+1) = 8(n)+ usV(n)es(n). (12)

Substituting (6),(10) into (11) and (12),we have the frequency-
domain expression of the adaptive algorithm. Next we
take the averages with respect to the stochastic signals
D(n),V(n) by fixing W(n) = W(n),AS(n) = AS(n).
Since d(n) and v(n) are uncorrelated and for large N, the
element of D(n) is uncorrelated with each other. From [1]
we have

E [D(n)D*(n)] ~ Ndiag [Po, P1,-+ , Pv—1] = Ap (13)

27i

where P; = P(¢/ "N ) and

E[D(n)d(n)] =~ [Po, P1,-+ ,Pn_1]” =P (14)
E [V(n)vf(n)] ~ No2I. (15)

Hence, the averaged system of is described as

W(n+1) = W(n) +u [As, Q)P
fA*g(n)Q(n)ApQT(n)AsW(n)
+A§(n)Q(”)A*AS(n)03
% [-Aasm@ (MAsW (n) + AS(n)]] N
AS(n+1) = AS(n)

+ 0% [Aasn @' (MASW () - AS(m)]  (16)
where @ is defined by replacing W (n), AS(n) with W (n),
AS(n) in Q.The operation [ ] means that the causal part is
taken from the inverse transform of the quantity in square
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brackets. This operation is necessary to keep W (n) and
AS(n) causal. Since all the matrices in (16) are diagonal,
we can focus on the [-th element as

Si(mP
1 —Wpr(n)AS;(n)

Wi(n+1) = Wi(n) + pw

(_ AS;(n)SiWi(n)

1-— Wl(n)AS'l (n)
ASz(n + ].) = ASz(’n)

2 Agl(n)SzV_Vl (n)

sy [1 —Wi(n)ASi(n)

+ AS’l(n)>]

+

- Agl(n)] .7

Obviously AS; = 0 is a stationary point of (17). By sub-
stituting this into (17) the stationary point Wi(n + 1) =
Wi(n) = W, is obtained. As N — oo, we can replace the
discrete frequencies with the continuous ones so that instead
of W1, for example, we use W (z) where z = /“. Hence, the
stationary point W (z) = Wypt(2) is given by

[S(zil)P(z) — 5(271)P(z)S(z)W(z)]+ =0. (18)

Let the spectral factorization of P(z) be P(z) = R(z)R(z™")
where R(z) is of minimum phase. Also, we assume that
S(z) = 27 %C(z) where ¢ is the delay and C(z) is a stable
polynomial. Then, the solution of (18) is

Wopt(2) = A(2)/C(2) (19)

where A(z) = [27R(2)],/R(2). We note that A(z) is the
transfer function of the optimal ¢-step ahead linear predic-
tor of d(n).

To examine the stability around this stationary point,
we calculate the following derivative matrix

OWi(n+1)  OWi(n +1)
OWi(n) OAS;(n) _f Ju e
OASi(n+1) 0ASi(n+1) o\ Jar e
oWy (n) OAS;(n)

at ASy(n) = 0 and Wi(n) = Wopt,i- We use a special rule
of the differentiation where we can discard the operation
[ ]+ [1]. At the stationary point we have

Jiropt = 1= 1wSi PiS: (20)
J22,0pt =1- Ms”g [1 - SlWopt,z] (21)

and J21 = 0. Hence for stability, since j., and ps are small
positive constants and |S;|>P; > 0, Re [1 — S(z)Wopt(z)] >
0 is required. From (19) this condition is

Re[l—2794(2)] >0 (22)

with z = ¢/, We note that 1 — 279A(z) is just the transfer
function of the optimal g-step ahead linear prediction error
filter of d(n).

3. ANALYSIS OF THE ADAPTIVE
ALGORITHM IN HEARING AIDS

to ear
x(n) Feedback Path | d(n)
He) —
Adapti ve Filter L+
W(z)
(v(n)) LMS e(n)
(dither)’

G(2) -

Forward Path

Fig. 3. Block diagram of the hearing aid plant.

Fig.3 shows the block diagram of a hearing aid plant where
d(n) is a stationary incoming signal with zero mean and the
spectral density P(z) and the forward path and the feed-
back path transfer functions are G(z), H(z), respectively.
A dither signal v(n) is also added. The weights of the adap-
tive filter denoted by W (2) is updated by the standard LMS
algorithm to cancel the effect of H(z). The analysis of the
system in Fig.3 can be done in the same way as in Section
2. The weight vector w(n) of the adaptive filter is updated
by

w(n+ 1) = wn) + pz(n)e(n) (23)

where w, x, e are defined like (3). The error signal e(n) is
given by
e(n) = d(n) + h'z(n) — wiz(n) (24)

where h is the weight vector corresponding to H(z). The
frequency domain expression of e(n) using the DFT matrix
is given by

E(n) = D(n)+ AgX(n) — Ajyn) X (n) (25)

where D(n), E(n), X (n), Ag, Aw(,) are defined as in Sec-
tion 2. Also, X (n) ~ A E(n) + V(n). Hence we have

X(n) ~ Q(n) (AcD(n) + V(n)) (26)

with Q(n) = [T+ A& ( Wny — A}})]il. Applying F to
(23) and using (26) we have

W(n+1) =W(n)+uQ(n) (AcD(n) + V(n))-

a0 = 5 (D' ()6 + V' (1)) @' () (W () — 1)

Using (13)-(15) the corresponding averaged system is given
by

W(n+1)=W(n)+pu[Qn)ALP
—Q(n) (AbArAG +021) Q' (n) (W (n) — H)] L@
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The I-th component is written as

Wi(n+1) = Wi(n)
GiP = of (Wi(n) — H,) :|
(1+Gr Wi (n) = HY)) (14 G (Wa(n) = Hi)) | |

T

(28)

At the stationary point W(z) = Wypt(2) we assume that
1+ G(2)(W(z) — H(z)) is stable. Then from (28) we have

[EEMLEELAUEEY 1) R
1+ G(z)(W(z) — H(2)) n '
In general it is difficult to solve this “generalized” Wiener-
Hopf equation. We consider the special case of no dither sig-
nal, that is, ¢2 = 0, and we assume that G(z) = 272G, (%)
where G.(z) is a stable polynomial. Then, (29) becomes
Ge(2)R(2)B(z)

where we set the bias B(z) as B(z) = Wqpt(z) — H(z) and
assume that 1+ 27 9G.(2)B(z) is stable. Hence,we have
A(2)

B() = i —2a0) (31)

where we assume that the prediction error filter 1—2z72A(z)
is stable. Taking the derivative of (28) and substituting this
stationary point Wopt,z = Hi+A1/(Gey — GiA;) at discrete

frequencies with o2 = 0, we have

OWi(n+1) -1
8Wl(n) .
—u G] PG, 71 (32)
|1+ G;(Wy (n) — Hp)|? L+ Gi(Wi(n) — Hi)
AL l
But from (31)
L =1-2"74A(2) (33)

1+ G(2)(Wopt (2) — H(z2))
so that the stability condition is again given by (22).
4. EXAMPLES AND SIMULATION RESULTS

Here we assume that d(n) is an m-th order AR (autore-
gressive) process with the innovation variance 1. That is,
R(z) is given by R(2) = (1 — a1z} — -+ — ap2z"™)"! For
m = 1, A(z) = af where |ai1] < 1. Hence (22) is sat-
isfied. For m = 2 and ¢ = 1, A(2) = a1 + azz~ ' and
(22) becomes Re[l — a1z™! —azz7% > 0. For m = 2
and ¢ = 2,A4(2) = a? + a2 + a1a22~" and (22) becomes
Re[(1 4+ a127 ) (1 — a1z7t — a»27%)] > 0. For the latter
problem (1 4 a1274)(1 — a12™* — azz2) must be a sta-
ble polynomial. Numerical investigations show that both
regions coincide. In Fig.4 the learning curve shows the em-
pirical variance of the squared error e¢?(n) of the former
problem for the case of m = 1,a; = 0.9,5(2) = 2" and
initial $(z) = 2.527" with Ny, = 8, Ny = 2,62 = 0.1, i =
0.0001, s = 0.01. The variance is obtained by averaging

mean square error

o 0z o4 o5 08 1 1z 14 1s 18 2
number of iteration

Fig. 4. Learning curve of the scheme in Fig.2.

over 50 data sets. In the early stage some instability is seen
but the steady state variance is 1.0296 which is close to the
lower bound 1. For the case of m = 2,q = 2, we see diver-
gence if we set the parameters outside the above stability
region. In Table 1, the steady state first 4 weights of the
bias for the latter problem are presented together with the
theoretical ones in (31) for the case of m = 1,¢ = 1,a1 =
0.9, H(z) = 271/10,G(2) = 427!, Ny = 16, = 0.0001.
The agreements are good.

bo b1 b bs
empirical | 0.2232 | 0.1986 | 0.1790 | 0.1617
theoretical | 0.2250 | 0.2025 | 0.1823 | 0.1640

Table 1. Theoretical and estimated bias in the hearing aid.

5. CONCLUSION

We have presented the analysis of the adaptive filter algo-
rithms for the feedback-type ANC with on-line modeling
of the feedback path and hearing aids concerning their sta-
tionary points and the local convergence conditions. The
obtained theoretical results coincide well with the simula-
tion results. A further study is needed about the property
of the generalized Wiener-Hopf equation describing the sta-
tionary point.

6. REFERENCES

[1] H. Sakai and S. Miyagi, “Analysis of the adaptive fil-
ter algorithm for feedback-type active noise control,”
Signal Processing, vol. 83, no. 6, pp.1291-1298, June
2003.

[2] S. M. Kuo and D. R. Morgan, Active Noise Control
Systems, John Wiley & Sons Inc., 1996.

[3] M. G. Siqueira and A. Alwan, “Bias analysis in con-
tinuous adaptation systems for hearing aids,” Proc.
ICASSP, vol. 11 pp.925—928, Phoenix, March 1999.

154



	Page151: 151
	Header: International Workshop on Acoustic Echo and Noise Control (IWAENC2003), Sept. 2003, Kyoto, Japan
	Page152: 152
	Page153: 153
	Page154: 154


