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ABSTRACT

Using algorithmic complexity to perform blind source separation
(BSS) was first proposed by Pajunen. This approach presents
the advantage of taking the whole signal structure into account
to achieve separation, whereas standard ICA-based methods only
use either time-correlations or higher order statistics in order to
do so. Another advantage of this approach is that no assumptions
about the probability distribution of the source signals need to be
made. However, although algorithmic complexity based methods
have been shown to outperform standard ICA algorithms in the
instantaneous BSS case, they haven’t been applied to convolutive
BSS to the present date. In this paper, we show that it is also
possible to use algorithmic complexity as a separating criterion to
perform BSS for convolutive mixtures and suggest a method to do
so. Testing the proposed method by computer simulation yielded
results which are encouraging in terms of SNR performance.

1. INTRODUCTION

Blind source separation (BSS) is a method for recovering a set
of source signals from the observation of their mixtures with-
out any prior knowledge about the mixing process. We consider
here the convolutive mixture case, i.e. � source signals �����	��
�
�������	���������������������	��� are mixed and the corresponding mixtures� ������
���� ���������!�!�����	�#"$�����	��� observed at % sensors, following�'&(�����)
+* �,.- � *0/21(& , �43��	� , ���6573�� , where 1(& , �43�� represents the
impulse response from source 8 to sensor 9 . The goal is to find a
separating system consisting of FIR filters : , &'�43�� of length ; to
produce separated signals < , �����=
 * "& - � *0>#? �/ -�@ : , &A�43��B�'&(���C5D3��
that are as close as possible to the source signals � , ����� .

Many methods based on independent component analysis
(ICA) have been proposed to solve the above BSS problem. We
do not review them here, extensive literature on the subject hav-
ing been published over the past years (see for instance [1, 2, 3]).
We however give an outline of the less well known algorithmic
complexity based approaches.

The Kolmogorov (or algorithmic) complexity EGFC���IH6� of a
string � H 
J� � �IKL�����	� H with respect to a universal computer M
is defined as ([4, 5])ENFC��� H �O
QPGRTSU�VXWZY�[]\'^ _ F`��� H � ^ � (1)

the minimum length over all programs _ FC��� H � on a universal
computer M that print �aH and halt. The universal computer M
is henceforth considered fixed and its mention thus omitted (see
[4] for more extensive explanations). The BSS problem can then
be defined as [5]:
Having observed mixtures � �����C
cb(�4�������	� , find a mixing mappingdb such that the total complexity of the mapping

db and the separated
signals e`����� is minimized.
Applying this definition to convolutive BSS leads to the minimiza-

tion of the cost functionf'gihZj �43�����e]�����lkm
7E hnj ? � �43��lkCoqpr Ets e]���	�lu
� (2)

where the separating system
j �43��C
vs : , & �43��lu is assumed to be in-

vertible and e]�����O
v��< � �������!�������	< � ���	�	� � is the vector of separated
signals, its components < , ���	� being of length

r
for all 8 .

When using the complexity minimization criterion, no as-
sumptions about the distribution of the source signals need to be
made. Moreover, both time correlations and higher order statis-
tics are taken into account to perform BSS, as opposed to standard
ICA-based methods which use only one of these two criteria (see
[5] for more details).

2. PROPOSED METHOD

We consider here the estimation of only one source signal ��w ����� ,
with xzy � p ���!�����	� � . In the remainder of this section, we de-
note by ������� the source signal to be estimated (the index x is
dropped for more clarity), <I����� is the length

r
estimate for ������� ,

and {��43��G
|��:}���43����������!�	:~"��43��	� denotes the separating FIR fil-
ters. We hence have <����	�X
 * "& - � * >#? �/ -�@ :C&'�43��B�'&����X5t3�� .

In the case of the above one-unit algorithm, the unmixing sys-
tem {��43�� is not invertible and the cost function (2) cannot be used
due to the presence of the first term, which we choose here to ig-
nore (this is also done in [6] in the linear BSS case). The cost
function (2) then becomesf��g s <I���	�lu#
 pr�Ets <I�����lu4� (3)

In order to actually perform BSS, we first need to derive an ap-
proximative expression �Ets <I�����lu for the algorithmic complexityEts <I�����lu of a time sequence <I����� . This is the object of sec. 2.1
(a similar discussion can also be found in [6]). Finally, we use the
cost function f�� �g s <I���	�lu#
 pr��Ets <����	�lu (4)

to implement BSS. Sec. 2.2 is devoted to the calculation of the gra-
dient of (4) using the approximation �Ets <I�����lu for Ets <I�����lu obtained
in sec. 2.1. In sec. 2.3, we discuss how to impose a normalization
contraint on {��43�� in order to avoid solutions of the form {��43��C
7� .

2.1. Algorithmic Complexity of a Time Sequence

Consider a time sequence <I�����O
v��<��4�����������!�	<I� r 5 p �	� . It can be
shown (see [4]) that if its samples <I�4��������������<�� r 5 p � are i.i.d. ac-
cording to the probability density function _ ��<�� of a random vari-
able � , then �

RnP�#��� pr�Ets <����	�luI
7�ts <I�����lu4� (5)

where the notation �ts <����	�lu is used for the entropy �t����� of the
random variable � (for convenience, a similar notation will be
used in all expressions involving expectations in the remainder of
this paper).



However, if <I���	� is a natural signal, there will in general be
dependencies among its samples, and the above theorem cannot
be used. Therefore, in order to help remove these dependencies,
we use linear prediction (see [7]) to find an estimate �<#����� for <����	�
following

�<#�����O

����� - � x � <I���L5��#� (6)

and define the sequence of the residuals �2<I����� of <I����� as� <I���	��� <I����� 5 �<#������� �C
	� @ �����!��� r 5 p � (7)
the idea being to approximate the complexity of the sequence <����	�
by that of the sequence � <I����� . Note that in order to perform linear
prediction, the process <����	� must be wide-sense stationary. More-
over, if <I���	� can be modeled as an AR process of order � @ , then
the sequence �2<����	� is white and equal to the innovations process
of <I����� . If its samples are also i.i.d. according to the probability
density function _ �
� < � of a random variable �2� , then the equality�

RnP�a�$� pr 5�� @ Ets � <I���	�lu#
7�ts � <I���	�lu (8)

holds, where �ts � <I�����lu denotes the entropy of the random variable�2� . However, it is difficult to find natural sequences <I����� that can
exactly be modeled as AR processes, and even in that case, there is
no guarantee that the samples of the innovations process �2<I����� will
be mutually independent. Equality ( � ) is thus only approximative.
Nevertheless, for natural signals <I���	� , it is reasonable to assume
that (8) is closer to being verified than (5) since linear prediction,
as used in (6) and (7), helps remove dependencies. The complexity
of the sequence <I����� is thus approximated by

Ets <I�����lu
� rr 5�� @ Ets �2<����	�lu�� r �ts � <I���	�lu
� (9)

where the second approximation was obtained using (8). Note
that the complexity of the prediction coefficients ��xL������������x ��� �
has been neglected in (9).

Let us now consider the problem of the estimation of the en-
tropy of the residual �ts �2<I�����lu which appears in (8) and (9). It is
useful to normalize the residual �2< to unit variance in order to re-
move the effects of scaling. Denoting by ��� the variance of the
residual, we have

�ts � <I�����lu�
7��� �2<����	��
��� o ����� � � (10)

If a good approximation (denoted ����� � ) of the negative log
density of the pdf of the residual normalized to unit variance5
����� h _ � ��� �! �lk is known, we can easily approximate �ts � <I���	�lu as

�ts � <I�����lu
�#"$�
��% �2<�
�'&(� o ����� �
��� (11)

In most cases, _ � ��� �! � is unknown and we set ����� � equal to the
negative log density of a generic super- or subgaussian random
variable (depending on the nature of the residual). We finally ob-
tain the following approximation for the per sample complexityE � s <I�����lu
� �� Ets <I�����lu of the time sequence <I���	� :

�E � s <����	�lu#
)"$�
��% �2<�
�
&(� o ����� �'��� (12)

2.2. Gradient Descent

Now that an approximation for the algorithmic complexity of a
sequence <����	� has been derived, let us return to the problem of
blind source separation of convolutive mixtures, where we ex-
tract one component <I����� 
 * "& - � *0>#? �/ -�@ : & �43��B� & ����5v3��0
* >a? �/ -I@ { �C�43�� � ��� 5c3�� , with {��43���
 ��: ���43����!�������	:~"$�43��	��� and� �����C
 ��� � �����������!���	� " ���	�	� � . We now have to find the FIR filters

{��43�� of length ; such that the cost function given in (4),f � �g s <I�����lua
 �E � s <I�����lu4� (13)

where �E � s <I�����lu is evaluated using (12), is minimized. We thus
calculate the derivative **,+ W.- \ f � �g s <I�����lu in order to perform gradi-

ent descent on
f � �g s <I�����lu . After some basic algebraic manipula-

tions, we obtain:/ f � �g s <I�����lu/ {��
0�� 
 // {��
0�� �E �21 >a? ��
/ -�@ { � �43��3� � ���L5 3��54i


" 1 � � ���X5�0��768% �2<�������
�9& 4
o p� �;: p 5 p� � " 1 � <$�����
68% � <$������ �<& 4>= // {��
0�� �
�

5 p�
� ����� - � : " 1 <I���L5?�a�'68% �2<$������
�9& 4@� // {��
0�� x � = � (14)

with � � �����>� � ���	�X5 * ���� - � x � � ���X5?�#� , � <I���	�]
v* >#? �/ -�@ {D�`�43��h � ���~503��m5c* ���� - � x � � ���m503O5	�#� k , � � the variance of �2<I����� ,x � �����	x �A� the linear prediction coefficients obtained using <I�����
and 6I��� � the derivative of ����� � . To actually use this expression in
a gradient descent algorithm, we need to evaluate **,+ W.- \ � � and**,+ W.- \ x � for all ��y � p �,�B�B���C� @ � . The expressions for xC� �����	x ���
and �'� being quite complex (especially for large � @ ), this is not an
easy task.

We hence restrict ourselves to the case � @ 
 p (first order
linear prediction). In this case, the expressions for **,+ W.- \ �
� and**,+ W.- \ x]� (which are given in the appendix) are reasonably simple.

2.3. Normalization Constraint

To avoid solutions of the kind {��43��C
0� , we need to impose a nor-
malization constraint on {��43�� . We propose two different possibili-
ties. A first option consists in adding a term of the form 58D ����� � �
to
f � �g s <I�����lua
 �E � s <I�����lu , which yields the cost functionf � �gFE G'H s <I�����lua
 �E � s <����	�lu�5�D ����� � � � (15)

For D�I � , this increases the cost of solutions with small values of� K� (which should be avoided). Note also that the value of the cost
function is left almost unchanged if � K� � p . Adapting the value
of D so as to have � K� � p using a simple control loop proved to
work well in practice: a minimum of the cost function satisfying� K� � p was always attained (see sec. 4).

Computer simulations also showed that, at least in the case of
speech mixtures, performing constraint free gradient descent onf � �g s <����	�luO
 �E � s <I�����lu actually seemed to work as well: although
both � K� and the amplitude of {��43�� decrease during minimization,
the latter is completed before either � K� or {��43�� become unaccept-
ably small. This is our second method.

In the sequel, we respectively refer to our two methods of deal-
ing with the normalization problem as the “control loop” and “un-
constrained” methods.

3. CONVOLUTIVE SPEECH MIXTURES

In this section, we show how to apply the method outlined in sec. 2
to the particular case of BSS for convolutive speech mixtures. We
thus assume that sequences <I����� and � ����� represent speech signals
sampled at a given frequency JLK .
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Fig. 1. Probability density function of the residual (normalized
to unit variance) _ �
�2<�� � � � as estimated using histograms. The

Laplacian pdf ;~�
�2<�� � � �6
�� KK ��� ? � K�� ���
	  �! � is a good approxi-
mation for _ �
�2<�� �'��� . .

3.1. Stationarity and AR model

The properties of speech have already been extensively analyzed:
it has among others been shown that it can be considered station-
ary during time intervals of

r���
���
 �����tP���� [8] and that it can
accurately be modeled as an AR process [9], the order of which
depends on the particular application in view.

In order to compute the approximation of the per sample com-
plexity �E � s <I�����lu of <I����� , we need to use linear prediction, with the
underlying assumption that <I����� is wide-sense stationary. There-
fore, since

r ��
���
 �����DP���� , we split <I����� into � segments of
length ; ��
���
 
)J K � r ��
���
 following

<I�����X

� ? �� , -I@ < W , \ ������� (16)

where

< W , \ �����O
 � <I����� if 8(; ��
���
�� ���c��8Io p �A; ��
���
 and ��� r
� otherwise.

(17)
If the � segments < W , \ ����� are mutually independent, it is reason-
able to assume that Ets <����	�lu � * � ? �, -I@ Ets < W , \ ���	�lu (see [5]). The
gradient of �E � s <I���	�lu can then be approximately evaluated as// {��
0�� �E � s <I�����lu
� � ? �� , -I@ // {��
0�� �E � � < W , \ �����"!A� (18)

After splitting � ����� into � segments � W , \ ���	� , proceeding as with<I����� in (16) and (17), equation (14) – where � ���	� is replaced by� W , \ ����� – can be used to evaluate each one of the terms in the above
sum. Linear prediction is also performed separately for each of the� segments < W , \ ����� yielding � sequences �2< W , \ ����� which are used
instead of � <I���	� in (14). Note however that the equality

< W , \ ���	�C
 >a? ��
/ -�@ { � �43�� �

W , \ ���L5 3�� (19)

is not quite exact for values of � close to 8 ��; ��
���
 or ��8�o p �'��; ��
���
 .Since speech can be modeled as an AR process, we can rea-
sonably assume that the sequences � < W , \ ���	� are close to being
white, and hence that their samples are close to being uncorrelated.
This is a necessary condition for having i.i.d. sequences �2< W , \ ����� .
We can thus hope that (8), where �2<I����� is replaced by �2< W , \ ���	� , is
approximately verified for each sequence �2< W , \ ����� .
3.2. Approximation of the pdf of the Residual

In this section, we consider the problem of the evaluation of the
negative log density of the pdf of the residual normalized to unit

Table 1. Experimental conditions
Source signal length #$���
Direction of sources p&% ��' and ( �)' (two sources)
Inter-sensor spacing *�
,+$-�Pi� (two sensors)
Reverberation time

r�. 
 p ���XP����Sampling frequency J K 
#�0/2143��
variance 5

����� h _ � ��� ! � k . Evaluating the probability density _ � ��� ! �
using histograms (see Fig. 1) shows that, at least in the case of
the parameters specified in sec. 4, it is reasonable to assume that5
����� h _ � ��� ! � k � �K

�����
% o65 %877 ��� ! 77 , i.e. the negative log-density

of a Laplacian random variable with 9i
:5 % . 1 This is not a sur-
prising result since it is a well known fact that speech is Laplacian
distributed. Note however that 5

����� h _ � ��� ! � k is function of many
different parameters (mixing system, separating system, order of
the linear predictor, source signals, iteration number, ...) and in
some cases may not be well approximated by �K

�����
% o65 %877 ��� ! 77 .

4. COMPUTER SIMULATIONS

The method outlined in secs. 2 and 3 was tested by computer
simulation. One source signal was estimated from two two-
signal mixtures, this having been done for twelve different source
signal combinations. The experimental procedure was the fol-
lowing: the mixing system’s impulse responses

� 1 , & �43���� 8	�l9 

p ����� % � were first measured in a real room using the experimen-
tal conditions summarized in Table 1. Twelve different combi-
nations �
� ���������	� K �����	� of speech signals produced by two male
and two female speakers were then mixed following � & �����7
* K,.- � * / 1 & , �43��	� , ���=5 3�� , and the proposed one-unit algorithm
subsequently applied to extract one speech signal from each of the
twelve mixtures. We used a first order linear predictor ( � @ 
 p ),a stationarity time

r ��
���
 
 p&% (XP���� and separating filters {��43��m
��:=���43����	: K �43��	� of length ; 
 % (�# taps. Although speech sig-
nals can only be considered stationary for time intervals of ap-
proximately ���XP���� , we set

r;��
���
 
 p&% (XP���� (corresponding to; ��
���
 
 p ��� � taps at J K 
 �$/21<3 ) in order to be able to learn fil-
ters {��43�� of acceptable length (this being because we ideally must
have ;>= ; ��
���
 ). Using

r ��
���
 
 p
% (XP���� proved to be accept-
able for our complexity evaluation purposes. Moreover, {��43�� was
initially set to {�? @A? 
 �43��m
CB5� � > K ����5(�A� > K ��D , we used a step size of

p � �FE p � ?�G , and two different methods (“control loop” and “un-
constrained”) were used to deal with the normalization problem
(see sec. 2.3).

The results are displayed in Table 2. The SDR (between
the original signal ������� and the extracted signal <����	� ) was mea-
sured using the method proposed in [10]. Both the “control loop”
and “unconstrained” versions of the suggested algorithm achieved
a good SNR improvement, but the extracted signal was often
severely distorted. In the “control loop” version, the distortion was
due to filtering (both high-pass filtering and low-pass filtering were
observed), whereas in the “unconstrained” version it was due to
whitening (see Fig. 2). We observed that the distortion introduced
by high- or low-pass filtering was much more unpleasant than the
one introduced by whitening when it came to listening. Therefore,
we believe that the “unconstrained” version is more suitable than
the “control loop” version for convolutive speech mixture BSS.
Table 2 also shows that the algorithm performance depends on the
nature of the input signals: for instance, in the “control loop” ver-

1The generic probability density function of a zero mean Laplacian ran-
dom variable X is given by HJI�KMLON,P K�Q ? P � Y � .



CONTROL LOOP UNCONSTRAINED

Speaker Ext. SNR Final Ext. SNR Final
Combin. Sig. imp. SDR Sig. imp. SDR

(dB) (dB) (dB) (dB)

M1-M2 M1 � p . � � 5 � . % � M1 % � . � p 5<( . ( �
M2-M1 M2 p p . # � 5 p # . ��� M1 %�% . # % 5 + . p �
M1-F1 M1 % ( . ( � 5 � . �)� M1 p � . � % 5 + . % �
F1-M1 M1 � p . #�� 5<( . ()( F1 � . +�+ 5 p ( . ��#
M1-F2 M1 p � . (�� 5 % . p&% M1 � . ��� 5 + . p #
F2-M1 M1 % � . #�� 5 # . � ( F2 p # . � � 5 p ( . p (
M2-F1 M2 p � .

� # 5 p # . + p F1 % � . � � 5 � . p �
F1-M2 M2 p � . %)% 5 p � . p � F1 % � . ��# 5�� . (��
M2-F2 M2 + . � p 5 p ( . p�p F2 % # . +)� 5 p p . #��
F2-M2 M2 ( . ��� 5 p # . �)# F2 %'p . � % 5 p � . # p
F1-F2 F1 p � . # p 5 p � . %(p F1 p . � � 5 % . ( p
F2-F1 F1 % + . p � 5 p&% . � % F2 � . � � 5 p � . � �

Average p � . ( � 5 p p . � � p # . � ( 5 � . � %
Table 2. SNR improvement and final SDR obtained with the pro-
posed algorithm (“control loop” and “unconstrained” versions) for
twelve different speech signal combinations.

r . 
 p � �CP����.

sion, the results were much better for combination M1-M2 than for
combination F1-F2 .

The fact that the SDR be negative might seem strange at first
sight. Note however that we are trying to recover the original sig-
nal ������� , which is substantially more difficult than recovering a
reverberated version of �(���	� (observed at one of the sensors), as in
most traditional convolutive BSS algorithms based on ICA. Bear-
ing this in mind, an SDR of 5 +���� to 5<(	��� – comparable to the
distortion due to the reverberation time

r . 
 p ���OP���� – is accept-
able. Nonetheless, when the SDR is below 5 p �
��� , the extracted
signal, especially in the “control loop” version of the algorithm,
can become very unpleasant to hear. Still, we believe that algorith-
mic complexity is a concept powerful enough to allow to recover
the original signal �����	� and will attempt, in future work, to im-
prove the SDR performance by using approximations of the cost
function (2) which include the term Ets j ? � �����lu (neglected in this
paper).

5. CONCLUSIONS

We proposed a method to use algorithmic complexity as a separat-
ing criterion to perform BSS for convolutive mixtures. The main
advantage of this method over standard ICA algorithms is that, to
achieve separation, the whole signal structure is taken into account
instead of only time correlations or higher order statistics. The ex-
perimental results obtained thus far are encouraging in terms of
SNR performance although the extracted signal is often severely
distorted. We believe that this problem can be solved by using
approximations of the cost function (2) which include the termEts j ? � �����lu . This will be the subject of future research.

A. APPENDIX

If we define �X� _ � � "Gs�<I��� o _ � <I������u and � U �"Gs � ����o _ � � � �����(u , we have � K� 
�

� W @ \ ?�
 � W � \


W @ \ and x � 
�


W � \


W @ \ .
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Fig. 2. Power Spectrum Magnitude of the original and extracted
signals for the “control loop” (Speaker Combination: M2-M1, top)
and “unconstrained” (Speaker Combination: F2-M1, bottom) ver-
sions of the proposed algorithm.

r�. 
 p � �CP����
.

The derivatives **,+ W.- \ � � and **,+ W.- \ x � respectively read// {��
0�� �
� 
 p�
��: >#? ��
/ -I@ � / ? U { / 5

�X� p �� K �4��� ����X�4��� >#? ��
/ -I@ ��� / ? U�� � o�� / ? U ? � �A{ / 5��X� p � >#?

��
/ -I@ � / ? U { / � = (20)

and // {��
0�� x]�]
 p� K �4��� : �X�4��� >#? ��
/ -�@ ��� / ? U�� � o�� / ? U ? � �X{ /

5 % ��� p � >a?
��

/ -�@ � / ? U { / = � (21)
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