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Abstract:  An algorithm of blind source separation is applied to mixture of eight voices taken in an ordinary room.  
As far as we know, blind separation of such many sounds is the first attempt in the world.  The algorithm, which 
was proposed by some of the authors, has proved to work very well for such a difficult task. 
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1. Introduction 
 
Many attempts have been made to perform blind 
separation (BSS) of mixed voice signals, using 
independent component analysis (ICA).  As far as we 
know, however, every experiment reported until now 
deals only with data taken in a very limited situation. 

Most of them treat artificially mixed sounds on a 
computer and assume rather simple mixing processes.  
In a real situation, however, since echo effect cannot be 
neglected, the mixing process has a very long time lag; 
the reverberation time is as many as a hundred 
milliseconds.  It implies that, if we implement the 
separator with an FIR filter, we need around one 
thousand taps when the sampling rate is 10 kHz. 

Even in the reports dealing with ‘real’ data, the 
number of sound sources is usually two.  It is very 
doubtful that the algorithms employed there work as 
well for a larger number of sound sources.  This paper 
reports a challenge to a much more difficult task; blind 
separation of eight sounds acquired in an ordinary 
office room. 

The convolutive ICA algorithm used here is 
proposed by some of the authors [3].  It employs a 
special principle (Minimal Distortion Principle) to 
eliminate filtering indeterminacy inherent in the 
problem in ICA. 
 
2. The BSS Algorithm 
 
BSS is a method for recovering a set of source signals 
from the observation of their mixtures without any 
prior knowledge about the mixing process.  In view of 
the level of complexity, the mixing process can be 
classified into two types: instantaneous mixture and 
convolutive mixture.  For separation of sounds the 
mixing process must be considered to be convolutive, 
of course. 

Inherently BSS has two kinds of indeterminacy.  

One is the indeterminacy in the numbering of the 
sources and the other is that in the scaling or filtering.  
The latter indeterminacy is more essential and will be 
focused on in this section.  In the case of 
instantaneous mixture the indeterminacy is usually 
considered unsubstantial, but in the case of convolutive 
mixture it cannot be overlooked in view of actual 
implementations and applications of BSS.  This 
section addresses an idea for normalizing the separator, 
which is an optimal separator in a particular sense. 
 
2.1 The mixing process and the demixing 
process 
Let us consider a situation where statistically 
independent random signals si(t) (i = 1,…, N) are 
generated by N sources and their mixtures are observed 
by N sensors.  It is assumed that every source signal 
si(t) is a stationary random process with zero mean, 
and the sensors’ outputs xi(t) (i = 1,…, N) are given by 
a linear mixing process: 
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It is known that, in order to realize BSS, at most one 
source signal is allowed to be Gaussian. 

To recover the source signals from the sensor 
signals, we consider a demixing process or a separator 
of the form 
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If the mixing process A(z) is known beforehand, the 
source signals can be recovered by setting as W(z) = 
A−1(z), of course.  Essential difficulty in BSS is that 
A(z) or A−1(z) must be estimated from the observed 
data x(t) only.  Besides, the impulse response { τW } 
might need to take a noncausal form in general, i.e., 

τW ≠ O (τ < 0). 
 
2.2 Minimal distortion principle 



In BSS the definition of the source signals has an 
indeterminacy.  Namely, if s1(t) ,…, sN(t) are source 
signals, their arbitrarily linear-filtered signals e1(z)s1(t) , 
…, eN(z)sN(t) can also be considered source signals 
because they are also mutually independent.  The 
mixing process is then A(z)diag{e1

-1(z),…,eN
-1(z)}. 

We call a separator of the following form a valid 
separator: 

1( ) ( ) ( )z z z−=W D A ,  (3) 
where ( )zD  is an arbitrary nonsingular diagonal 
matrix; ( )zD { }diag ( )id z= .  If the separator is valid, 
each of the source signals appears at an output terminal 
of the separator, though it is subjected to a linear 
transformation ( )id z .  [More generally we should 
define a valid separator as ( )zW 1( ) ( )z z−= PD A , 
where P is a permutation matrix, but we consider only 
the case of P = I to make the description below 
simple.] 
    In BSS, all the valid separators are usually 
considered essentially equivalent.  However the 
following separator has a special meaning: 

* 1( ) diag ( ) ( )z z z−⋅W A A    (4) 
We call this separator the optimal (valid) separator.  
The optimal separator * ( )zW  can be characterized by 
either of the following two propositions. 
 
Proposition 1:  The optimal separator * ( )zW is a 

valid separator that minimizes 2( ) ( ) ( )z z z−W A A . 
 
Here, the norm of transfer function matrix ( )zX  is 
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Proposition 2:  The optimal separator * ( )zW  is a 

valid separator that minimizes 2( ) ( )E t t − y x . 

 
These two propositions state the minimal distortion 
principle in two manners.  Namely, the optimal 
separator is determined such that the overall transfer 
function ( ) ( )z zW A  be as close to ( )zA  as possible, 
or equivalently the separator’s output y(t) be as close 
to x(t) as possible.  The optimal separator is ‘optimal’ 
in the sense that the separator’s output is the least 
subjected to distortion among the set of all the valid 
separators. 

The optimal separator has some properties that are 
favorable in actual implementation of BSS: 
(i) The separator’s output then becomes 

( ) diag ( ) ( )t z t= ⋅y A s .   (4) 

This implies that output ( )iy t  is ( ) ( )ii ia z s t , which is 
the i-th source that would be observed at the i-th sensor 
when there were no other source signals.  This 
property is very natural and convenient particularly for 
separation of voice signals. 
(ii) The optimal separator does not depend on the 
properties of the sources; it depends on the mixing 
process ( )zA  only.  So, even for such nonstationary 
signals as voices, the optimal separator is invariant 
with time as long as the mixing process is fixed.  This 
property helps to enhance the stability of the algorithm, 
compared to the one proposed in [1]. 

The optimal separator can also be characterized as 
a direct constraint on matrix ( )zW . 

 
Proposition 3:  The optimal separator * ( )zW  is a 
valid separator that satisfies 
 1diag ( )z− =W I .   (5) 
 
Including the pioneering work by Herault and Jutten 
some studies on BSS have considered a separator of 
feedback structure: 

( ) ( ) ( ) ( )t t z t= −y x W y ,  (6) 
where ( )zW  is a matrix whose diagonal elements are 
all zeros.  This is equivalent to putting ( )zW  

( ) 1
( )z

−
= +I W  in a feedforward-type separator, 

leading to 1( )diag z−W = I .  So, the present 
normalization itself is not a new idea.  What we want 
to stress is that the constraint (5) can be derived from 
the minimal distortion principle (Propositions 1 and 2).  
It is hard to design a feedback-type separator so as to 
guarantee its stability, particularly for non-minimum 
phase mixing processes.  Using the following 
proposition, we can incorporate the constraint (5) 
easily in a multi-dimensional FIR filter, which is 
guaranteed to be stable. 
 
Proposition 4:  The optimal separator is a valid 
separator that satisfies 

( )diag ( ) ( ) ( )TE t t t τ − − = y x y 0  (7) 

for every τ. 
 
As shown in the next subsection, the last proposition is 
the most important for implementation of MDP. 

 
2. 3 An implementation of the minimal 
distortion principle 
Here, we want to show how the proposed principle is 
implemented.  We start with an approach proposed by 
Amari et al. [1].  Define 
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where [ ( )]h ty  is the entropy rate of ( )ty  and ( )iq u  
is a pdf assumed for source signal ( )is t .  If the 
source signals are iid (or liner processes in general) 
and ( )iq u  approximates well the real pdf of ( )is t , 
then minimizing ( ( ))I zW  provides a valid solution.  
In actual computation, however, the separator must be 

embodied by a FIR filter as 
2
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minimization is then performed by the following 
iterative calculation (natural gradient learning):  
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where 3 1 22L L L+ , ( ( ))tϕ y

[ ]1 1( ( )),..., ( ( )) T
N Ny t y tϕ ϕ  and iϕ  is defined as 

( ) log ( )i iu d q u duϕ − .  α is a small positive 
constant.  Note that the time shift of L1 and L3 has 
been introduced in consideration of the available data 
at time t. 

We here introduce the idea of nonholonomic 
constraint 1diag ( ) ( )z z−∆ =W W O  [2], leading to 
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According to this algorithm, each output ( )iy t  of the 
separator becomes indeterminate with respect to linear 
transformation.  Now we incorporate the minimal 
distortion principle (Proposition 2) into this system.  
We superimpose the (natural) gradient of 

2( ) ( )E t t − y x  (or Proposition 4) to (15) as 
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This algorithm gives the desired separator, 
independently of the initial condition of ( )zW . 
    In the above algorithm the computation time 
increases in proportion to L3

2.  With a slight 
modification, we can reduce the time considerably.  
The following algorithm allow for the computation 
time of order L3. 
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where 0 1 2L L L+ . 
 
3.  An Experimental Result 
 
The setup of an experiment is shown in Fig. 1. The 
source sounds were eight voices of a woman which 
were provided by eight loudspeakers. The 
reverberation time (the time for the sound intensity to 
decay by 60 dB) of the room was around 140 ms. 

We applied the proposed algorithm to sound 
signals taken by 8 microphones at 10kHz sampling 
frequency.  Since the length of the filter was 801 
( 1 2200, 600L L= = ), totally 64 x 801 parameters had 
to be estimated to obtain a desired separator. 
Independent components were considered 
super-Gaussian, and iϕ  is chosen as ( ) sgn( )i u uϕ = .  
The learning coefficient α  was set as α = 2x10-6 and 
parameter β  was set as β = 0.01. 

Fig. 2 shows the impulse responses of the mixing 
process A(z) and the overall process W(z)A(z).  From 
one can see a desired separator was successfully 
obtained.  The recovered sounds were very clear, 
which will be shown at the Workshop. 
 
4. Concluding Remarks 
 
The proposed algorithm has proved to be very effective 
for BSS for convolutive mixture of many voices.     
A remaining serious issue is that it takes a very long 
time to complete the calculation; some hours for a 
30-second data.  Hardware implementation is a future 
work. 
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Fig. 1 A configuration of the loudspeakers and the 
microphones. 
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Fig. 2 The impulse responses of (a) the mixing process 
A(z) and (b) the overall process W(z)A(z).
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