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ABSTRACT

The aliasing problem in adaptive polynomial filtering
is described and two different approaches to overcome
it are proposed. The polynomial model considered is
the separable homogeneous Volterra filter, which is a
cascade of polynomial preprocessor and a linear fil-
ter. The polynomial preprocessor produces higher or-
der harmonics to the output and they are aliased to
lower frequencies. It is shown that if the aliasing is
taken into account the performance of acoustic echo
cancelers can be improved by 1–2 dB.

1. INTRODUCTION

In this paper we focus on a problem related to polyno-
mial model used for compensating acoustic distortion
produced by an inexpensive loudspeaker in hands free
set.

Traditionally, acoustic echo path is modeled with
linear FIR filter

ŷ(n) =

M−1∑

m=0

wmx(n − m) (1)

where x(n) is input (far-end signal), ŷ(n) output
(replica of the echo) and M is the number of filter pa-
rameters w0, w1, . . . , wM−1. The performance of this
linear model suffers when the echo path is nonlinear,
e.g. when small inexpensive loudspeakers are used. We
have successfully used polynomial models for compen-
sating acoustic distortion originating from low-powered
amplifier and small loudspeaker on high volumes [1, 2].

Polynomial preprocessor [3, 4] that is shown in Fig-
ure 1 was first introduced to model acoustic distortion
produced by low quality amplifiers. The model for the
echo path becomes

ŷ(n) =
M−1∑

m=0

wm

Q∑

q=1

aqx
q(n − m), (2)
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Figure 1: Block diagram of the echo canceller system
with signals: x(n) far-end, y(n) far-end echo,e(n) near-
end, d(n) near-end microphone, s(n) output of the pre-
processor, ŷ(n) the replica of far-end echo and ê(n) the
estimation error

where Q is the order of the nonlinearity. The polyno-
mial part (3) of the model (2) generates higher har-
monic frequencies to the polynomial preprocessor out-
put

s(n) =

Q∑

q=1

aqx
q(n). (3)

that are aliased to lower frequencies unless sampling
frequency is sufficiently high. In this paper we propose
two straight forward methods to overcome this problem
and discuss their limitations.

This paper is organized as follows. In Section 2 we
introduce the problem related to polynomial preproces-
sor and aliasing and give two straight forward solutions
for the problem. Simulation arrangements and experi-
mental results are presented in Section 3 and some final
conclusions are drawn in Section 4.
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Figure 2: Aliasing effect: Spectrum of x5 where
x = sin(2πn2500/Fs), Fs = 8000Hz, 16000Hz and
32000Hz

2. POLYNOMIAL MODEL AND ALIASING

Polynomial preprocessor (3), shown also in Figure 1,
generates harmonic frequencies to the polynomial pre-
processor output s(n). If the sampling frequency is too
low those harmonic frequencies are aliased to the lower
frequencies.

The harmonic frequencies appear when computing
powers of input in the polynomial preprocessor ([5],
pp. 44, 54–55). When the the signal is preprocessesed
by (3), such frequencies are generated to the output
s(n) that are not presented in the input x(n).

As an example, let us consider sine signal

x(n) = sin(nω) (4)

and use it as input for polynomial preprocessor of order
Q = 2. The output results as

s(n) = a1 sin(nω) + a2 sin
2(nω) (5)

s(n) = a1 sin(nω) +
a2

2
(1 − cos(n2ω)) (6)

There is now two frequencies ω and 2ω present in
the output signal s(n), while only the base frequency
ω was present in the input signal x(n). If the order
of the polynomial preprocessor is higher then there ex-
ists more and higher harmonic frequencies also in the
output. If the frequency ω is higher than the half of
the Nyquist frequency then all the higher frequencies in
the output are aliased. This aliasing may decrease the
advantage achieved by the adaptive polynomial prepro-
cessor in acoustic echo control.

The aliasing phenomena is illustrated in Figure 2
where 2.5 kHz sinusoidal signal is raised to the 5th
power. Three different sampling frequencies 8 kHz,
16 kHz and 32 kHz are used. As shown in the fig-
ure, the harmonics at 5 kHz and 7.5 kHz are aliased
unless the sampling frequency is sufficiently high.
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Figure 3: Block diagram of the upsampling and down-
sampling solution,
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Figure 4: Block diagram of the low-pass filtering solu-
tion.

The most straight-forward method to overcome this
aliasing problem is to upsample the signal by the factor
of q before raising it to the qth power, and downsample
signal afterwards, as illustraded in Figure 3. This ap-
proach is computationally demanding because the poly-
nomial order Q may become very high in polynomial
filtering, for example, order Q = 13 is used in [3].

As another approach to the aliasing problem, we
have also considered an approach where the input sig-
nal is filtered with the low-pass filter with stop-band
edge at the 1/q of the Nyquist frequency and only then
raised to the qth power. The block diagram of the pre-
processor of this solution is shown in Figure 4.

3. SIMULATIONS

In the following simulations the linear filter is adapted
using normalized LMS algorithm and the polynomial
preprocessor is adapted using the QR–RLS algorithm.

The data we use is measured in a halted car in
garage using a hands-free set that has an inexpen-
sive distorting loudspeaker. Test signal consist of four
Finnish sentences grouped in two groups and said first
by a male speaker and then by a female speaker. All
simulation signals are recorded in single-talk situation
where there is no other near-end excitation than echoes
from the far-end.

The performance of echo cancellers is measured in
terms of Echo Return Loss Enhancement (ERLE) de-
fined by

ERLE = 10 log
10

E(y2(n))

E(ê2(n))
, (7)
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Figure 5: Adaptive linear filter with polynomial prepro-
cessor compared to the ordinary adaptive linear filter in
intermediate (dashdot) and high (solid) volume level.

0 2 4 6 8 10 12 14 16 18
−4

−2

0

2

4

6

D
iff

. (
dB

)

Time (s)

Figure 6: Difference between the upsampling-
downsampling approach and the linear filter with or-
dinary polynomial preprocessor in intermediate (dash-
dot) and high (solid) volume level.

which is estimated from data in 100 ms windows. Far-
end echo signal y(n) is estimated with microphone sig-
nal d(n).

First we notice that the linear adaptive filter with
adaptive polynomial preprocessor has better perfor-
mance than the ordinary linear adaptive filter, as shown
in the Figure 5.

When we used the upsampling-downsampling ap-
proach we get at the most 1–2 dB enhancement in
ERLE compared to the normal adaptive filter with
adaptive polynomial preprocessor, as shown in the Fig-
ure 6.

The improvement is the most significant in the be-
ginning of speech activity that indicates that sensitivity
to speech activity detection, shown in Figure 5 and ob-
served in [1, 2], is possibly caused by aliasing.

We also tested lowpass filtering approach. As shown
in the Figure 7, this model causes significant perfor-
mance loss compared to the normal polynomial pre-
processor and is no better than the linear model, as
shown in Figure 8.

Finally, we tested these two different models
to overcome aliasing effects with a non-adaptive
model, where near-optimal values for both prepro-
cessor parameters a1, a2, . . . , aQ and filter parameters
w0, w1, . . . , wM−1 in (2) are computed in turns, so that
first the parameters of preprocessor are kept constant
and system is solved in least squares sense respect
to filter parameters, then filter parameters are kept
constant and system is solved respect to preproces-
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Figure 7: Difference between the lowpass filtering ap-
proach and the linear filter with ordinary polynomial
preprocessor in intermediate (dashdot) and high (solid)
volume level.
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Figure 8: Difference between adaptive linear filtering
and lowpass filtering approach in intermediate (dash-
dot) and high (solid) volume level.

sor parameters. The process is depicted in Table 1.
We noticed that difference between the parameters
from different iterations ∆w = w(k + 1) − w(k) and
∆a = a(k + 1) − a(k), where k is iteration, diminishes
quite rapidly.

One should note, that the whole signal is
used for computing parameters w0, w1, . . . , wM−1 and
a1, a2, . . . , aQ in each iteration, so that resulting pre-

Table 1: Computation of the parameters of the non-
adaptive model

Initialization:

1. wm = 0 for m = 0, 1, · · · ,M − 1

2. a1 = 1, aq = 0, q = 2, 3, . . . , Q

Iterate:

1. Compute s(n) for n = 1, 2, . . . , N

2. Solve w0, w1, . . . , wM−1 so that∑N

n=1
(d(n) −

∑M−1

m=0
wms(n − m))2 is

minimized.

3. Compute u(n) =
∑M−1

m=0
wmx(n − m)

4. Solve a1, a2, . . . , aQ so that∑N

n=1
(d(n) −

∑Q

q=1
aqu

q(n))2 is mini-
mized
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Figure 9: Difference between model where alias-
ing effects are not considered and the upsampling-
downsampling approach in intermediate (dashdot) and
high (solid) volume level.
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Figure 10: Difference between a static model where
aliasing effects are not compensated and the lowpass
filtering approach in intermediate (dashdot) and high
(solid) volume level.

processor and filter parameters are one kind of time
averages over the whole signal. However, in our mea-
surements echo path is quite time invariant and there-
fore this kind of approach is justified.

In Figure 9 we see that with this nonadaptive model
the advantage achievieved with up- and downsampling
is very small.

If we use low-pass filtering to cut away frequencies
that are aliased to the lower frequencies the result is
similar to the case with adaptive algorithms as we can
see from Figure 10. The performance loss is signifi-
cant compared to the model where no compensation
is made, although the performance is still better than
with non-adaptive linear filter, as shown in Figure 11.

4. CONCLUSIONS

In this paper we studied the effect of aliased higher
harmonic frequencies to simulations if they are not
compensated. The harmonic frequencies are generated
by a polynomial preprocessor. In our simulations we
could achieve at best 1 – 2 dB improvement in ERLE,
while computational complexity increased due to up-
sampling and downsampling. Thus the aliasing effect
does not severely harm the performance of polynomial
filters in this application and therefore increase in com-
putational complexity might not be justified. However,
the aliasing effects is something to be considered when
trying to reach the best possible echo attenuation.
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Figure 11: Difference between a fixed linear model and
lowpass filtering approach in intermediate (dashdot)
and high (solid) volume level.

We also tried to simply cut such frequencies that
are aliased instead of computationally consuming up-
sampling and downsampling, but this approach did not
show any improvement compared to linear filters in
terms of echo attenuation. Thus, finding a method that
is computationally less demanding can be a topic of fu-
ture study.
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fast affine projection algorithm for nonlinear acous-
tic echo cancellation,” in XI European Signal Pro-

cessing Conference, EUSIPCO, September 2002.

[3] Alexander Stenger and Rudolf Rabenstein, “An
acoustic echo canceller with compensation of non-
linearities,” in IX European Signal Processing Con-

ference, EUSIPCO-98, September 1998.

[4] Alexander Stenger and Walter Kellermann, “Adap-
tation of a memoryless preprocessor for nonlinear
acoustic echo cancelling,” Signal Processing, vol.
80, pp. 1747–1760, 2000.

[5] V. John Mathews and Giovanni L. Sicuranza, Poly-

nomial Signal Processing, John Wiley & Sons, Inc.,
605 Third Avenue, New York, 2000.


	Page139: 139
	Header: International Workshop on Acoustic Echo and Noise Control (IWAENC2003), Sept. 2003, Kyoto, Japan
	Page140: 140
	Page141: 141
	Page142: 142


