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ABSTRACT

Echo attenuation obtained using linear adaptive filter-
ing algorithms in the presence of distorting loudspeaker
is discussed. Experimental evidence is given that, when
the acoustic echo path is almost linear, computation-
ally complicated algorithms (such as RLS or APA) give
considerable better echo attenuation than normalized
LMS, but this is not the case when there are consider-
able nonlinearities (i.e. acoustic distortion) in the echo
path. However, it is illustrated that when a suitable
nonlinear preprocessor is added to produce acoustic
distortion to adaptive linear filter input then the more
complicated algorithms give better overall echo atten-
uation than normalized LMS. Finally, it is shown that
if there is acoustic distortion but no preprocessor the
parameters of linear adaptive filter are the closest to
the parameters of acoustic echo path that follows the
nonlinearity in normalized LMS adaptation.

1. INTRODUCTION

This paper focuses to acoustic echo control in the pres-
ence of distorting loudspeakers. Acoustic echo path is
modeled using FIR filter defined by

y(n) =
M−1∑
m=0

wmx(n − m), (1)

where x(n) is input (far-end speech), y(n) output (re-
plica of the echo) and M is the number of filter param-
eters wm, m = 0, . . . , M − 1.

According to [1] the normalized LMS algorithm has
become the de facto standard for adapting (1) in acous-
tic echo cancellation and originally the algorithm was
proposed in the late 1960’s [2]. It is derived consider-
ing a constrained optimization problem where the sum∑M−1

m=0 (wm(n)− wm(n − 1))2 is minimized subject to
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constraint

M−1∑
m=0

wm(n)x(n − m) = d(n), (2)

where d(n) is a microphone signal in near-end (desired
output). The algorithm can be summarized by

y(n) =
M−1∑
m=0

wm(n − 1)x(n − m)

e(n) = d(n)− y(n)

wm(n) = wm(n − 1) +
µe(n)x(n − m)

δ +
∑M−1

l=0 x(n − l)2
.

If the step size µ = 1 and regularization factor δ = 0 the
exact solution of the constrained optimization problem
is obtained in each step. However, in practice, it has
been observed that adjusting µ and δ can improve the
algorithm significantly (cf. e.g. [3]). The computational
complexity of normalized LMS is low, O(M).

It has been long known that the normalized LMS
algorithms suffers from slow convergence [2]. Thus, al-
ternative algorithms such as RLS, and more recently
affine projection algorithm (APA) have been proposed
[2, 4]. They have fast initial convergence and, in acous-
tic echo control, they generally give good echo attenu-
ation if the signals are measured using the high-quality
equipment. However, when using measurements with
inexpensive hands-free sets it seems that, after conver-
gence, the normalized LMS gives as good or even better
echo attenuation.

We assume that this is caused by the acoustic dis-
tortion in the loudspeaker. Such measurement noise
is a filtered version of a signal dependent error signal,
i.e. it is not additive. Thus, linear model is insufficient
in the presence of distorting loudspeakers, especially
in high volumes. Although loudspeakers are not com-
pletely memoryless devices, we consider modeling the
echo path with a separable model, a memoryless non-
linearity followed by a linear filter, as illustrated in Fig-
ure 1. Previously we have successfully modeled acous-
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Figure 1: Model for acoustic echo path: a memoryless
nonlinearity followed by a linear filter

tic distortion in loudspeakers using polynomial models
[5, 6].

This paper is organized as follows. In Section 2, we
review RLS and affine projection algorithms and dis-
cuss how they differ from normalized LMS. New results
have been obtained in thorough simulations and they
are presented in Section 3. Some final conclusions are
drawn in Section 4.

2. ALGORITHMS

In this section we review the RLS and the affine pro-
jection algorithms (APA). They are computationally
more complicated than normalized LMS. The underly-
ing idea in both the algorithms is to fit more precisely
to the data than it is possible with normalized LMS.
In normalized LMS adaptation only previous values of
filter parameters, current data and estimation error are
used.

In least squares adaptive filter design the cost func-
tion

ERLS =
n∑

k=0

λn−k

(
d(k)−

M−1∑
m=0

wmx(k − m)

)2

+λn+1δ

M−1∑
m=0

w2
m (3)

is minimized at each iteration n by setting its gradient
equal to zero with respect to parameters w0, . . . , wM−1.
The parameter λ is referred to as forgetting factor and
its role is to control convergence and tracking speed.
The RLS algorithm is known to suffer from numerical
instability, but such problems can be almost completely
avoided by using its square root variants, such as QR–
RLS. The computational complexity of ordinary RLS
and its square root variants is (O(M2)). There are also
fast variants of RLS but they are numerically unstable
[2].

The ordinary affine projection algorithm, APA, pro-
posed in [7] is a generalization of the normalized LMS
algorithm, where the constraint (2) is generalized to be

M−1∑
m=0

wm(n)x(n−m− p) = d(n− p), p = 0, . . . , P − 1.

(4)
The parameters µ (step size) and δ (regularization fac-
tor) are introduced again to improve the performance
of the algorithm. The normalized LMS algorithm cor-
responds to the special case P = 1.
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Figure 2: Far-end signal

The computational complexity of ordinary APA is
O(MP + P 2), a tradeoff between RLS and normalized
LMS, and it may also suffer from numerical instability.
Thus, there have been quite many variants introduced
recently [2].

3. SIMULATIONS

In simulations, we demonstrate that there is no signifi-
cant difference between the adaptive linear filtering al-
gorithms in the presence of distorting loudspeakers un-
less far-end signal is suitably preprocessed. Test signal,
shown in Figure 2, consist of Finnish sentences ”Hän ei
pelkää mitään. Lapsi opettelee puhumaan. Pöydällä
on sanomalehtiä. Elokuva oli jännittävä.” said first in
normal loudness level and repeated with the loudness
of the hands-free set turned into maximum.
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Figure 3: The echo attenuation (ERLE) obtained us-
ing normalized LMS (top) in the presence of distorting
loudspeakers and how much it can be improved using
QR–RLS (middle) and AP (bottom) algorithms
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Figure 4: The echo attenuation (ERLE) obtained using
normalized LMS (top) when the true echo path is lin-
ear and how much it can be improved using QR–RLS
(middle) and AP (bottom) algorithms

The first simulations are carried out using NLMS,
QR–RLS and AP (projection order P = 6) algorithms
with µ = 0.8, δ = 9 × 10−5 and λ = 0.999. The mea-
surements have been carried out in a car in garage using
a hands-free set and high quality equipment. In Fig-
ures 3 and 4, we give some evidence that in terms of
echo attenuation

ERLE = 10 log10

E(d2(n))
E(e2(n))

(5)

(d(n) – echo, e(n) – residual echo, measured in windows
of 100 ms) QR–RLS and APA outperform normalized
LMS when the measurements are carried out using high
quality equipment, but there is no such difference in the
presence of distorting loudspeakers. We also note that
in the case of distorting loudspeakers the performance
of linear adaptive filtering algorithms drops by 10–15
dB when the volume is turned to maximum.

Secondly, we consider separable homogeneous Vol-
terra filter

y(n) =
M−1∑
m=0

Q∑
q=1

wmaqx(n − m)q, with a1 = 1, (6)

for compensating acoustic distortion in loudspeakers.
It is of the general form illustrated in Figure 1 with
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Figure 5: The improvement in echo attenuation
(ERLE), compared to linear adaptive filter (adapted
using normalized LMS), obtained using a fixed nonlin-
ear preprocessor and normalized LMS (top) QR–RLS
(middle) and AP (bottom) algorithms

s(n) =
∑Q

q=1 aqx(n)q and y(n) =
∑M−1

m=0 wms(n −
m). We compute fixed parameters a1, a2, . . . , aQ off-
line and compare the performance of adaptive linear
filtering algorithms with s(n) as input and d(n) as out-
put. As shown in Figure 5, the QR–RLS adaptation of
the linear part now gives slightly better improvement
to echo attenuation compared to normalized LMS.

Finally, we use measurements from anechoic cham-
ber as far-end signal x(n) and generate the microphone
signal

d(n) =
M−1∑
m=0

hms(n − m), (7)

from the measured loudspeaker output s(n) using a
fixed linear filter H(z). Its coefficients were estimated
from data simultaneously with the fixed nonlinearity of
the previous example. In Figure 6, we compare the re-
sults of adaptive linear filters in terms of system error
norm

∆w = 10 log10 E

(
M−1∑
m=0

(hm − wm(n))2
)

(8)

estimated in windows of 100 ms. As shown in Figure 6,
in terms of system error norm the best results are ob-
tained using normalized LMS although in the beginning
of speech activity QR–RLS gives parameters that are
closer to the parameters of H(z). In Figure 7, the re-
sults are compared in terms of overall echo attenuation.

4. CONCLUSIONS

We have simulated the performance of adaptive linear
filtering algorithms in the presence of distorting loud-
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Figure 6: System error norm between the true and esti-
mated linear echo path that follows an acoustic distor-
tion measured in anechoic chamber. The echo path was
estimated using normalized LMS algorithm (top) and
compared to QR–RLS (middle) and APA (bottom).

speakers that decrease the performance of acoustic echo
cancelers driven by normalized LMS algorithm by 10–
15 dB in maximal volume levels.

We have shown that although in ideal environment,
where acoustic echo path is almost linear, considerable
improvement can be achieved using QR–RLS or AP al-
gorithms, both algorithms fail in producing any signifi-
cant improvement (besides faster convergence) in pres-
ence of distorting loudspeakers. The normalized LMS
finds the parameters of the linear echo path that fol-
lows the nonlinearity most efficiently. If the acoustic
distortion is compensated using a polynomial prepro-
cessor the use of QR–RLS or APA can be justified in
the performance point of view.
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Figure 7: Comparison of the results presented in Fig-
ure 6 in terms of echo attenuation.
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