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ABSTRACT

Several robust algorithms for echo cancellation use non-
linear reference and/or error functions. Most of them re-
quire time-variant threshold estimators, e.g., noise level es-
timators or double-talk detectors, since their nonlinearities
have to be adjusted with changes in near-end signal lev-
els. We propose a new frequency domain adaptive algo-
rithm: the gradient-limited FLMS (GL-FLMS), in which
the coefficients are updated with a nonlinear function of the
error scaled by the reference magnitude, i.e., the error-to-
reference ratio (ERR). When the acoustic coupling level be-
tween loudspeaker and microphone is bounded, the ERR is
also bounded during single-talk, but may increase during
double-talk. The GL-FLMS limits unexpected increases in
the ERR to prevent divergence of the coefficients, while not
neglecting updates to adjust when a large reference signal
introduces a large error during single-talk.

1. INTRODUCTION

Adaptive filters have been successfully applied to acoustic
echo cancellation. In the field, the robustness of the adap-
tation against double-talk is strongly required. Several ap-
proaches fulfilling this requirement have been proposed. In
two echo path models [2] and duo-filter control systems [9],
an adaptive background filter is used with a fixed foreground
filter. These approaches perform well, but the dual filters
increase the computational cost by about 50 % and control
for the transfer of coefficients is necessary. Some adaptive
algorithms in which the coefficients are updated with non-
linear functions of the reference input and/or error signals
[5, 7] have robust properties. For example, error nonlinear-
ities are used to achieve double-talk robustness for certain
algorithms [1, 10, 11]. In the first [1], an infinite clipper
is applied to the error. Other algorithms [10, 11] introduce
a variable scale factor to the error nonlinearity, though a
double-talk detector (DTD) is required to control it. The
variable step-size control approach [8] can also be regarded
as a nonlinear approach. In this variant of the NLMS algo-
rithm, the step-size is controlled by using nonlinear function
of the reference power level. A noise level estimator con-
trols the nonlinearity threshold.

In this paper, we focus on the frequency domain echo
cancellers which have a single-tap adaptive filter in each fre-
quency bin. Of the conventional algorithms [1, 8, 10, 11],
only one [10] is addressed to the frequency domain, though
some of the others can be made applicable. However, none
of them inherently has signal level scalability, so their ro-
bustness is only achieved at the cost of peripheral estimator
or detector. We propose a new robust algorithm with a non-
linear function that provides scaling of the reference and er-
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Fig. 1. Frequency domain echo canceller.

ror signal levels. This algorithm provides good performance
without time-variant threshold estimators.

2. FREQUENCY DOMAIN ECHO CANCELLER

2.1. Configuration
The frequency domain echo canceller that we are discussing
is shown in Fig. 1. The reference signal x(n) at a discrete
time index n is picked up by a microphone, passing through
a room echo path which has an impulse response modeled
ash=[hy, -+, hr]T where the length is I and T denotes the
transpose. The total microphone signal y(n) is expressed as
y(n) = h"Rx(n) + s(n) + a(n), (1)
where x(n) =[z(n—L+1), -+, 2(n)]T, R is the matrix that
reverses the order of element of x(n), and s(n) and a(n)
are, respectively, speech and ambient noise at the near-end.
The transformed reference Xy (1) at the k-th step and I-th
frequency bin is an element of the discrete Fourier trans-
form (DFT) of [xT(kL— L),xT(kL)]T, where the index k
is counted up every L increments of n, and | =0, - -, 2L —
1. The filter coefficient for k and [ is H(l). The filter

output is V(1) = Hy(1)Xx(l). The echo replica y(kL)
corresponds to the last I elements of the inverse DFT of
[V3(0),- - -, V(2L —1)]T. The error is e(kL) = y (kL) —
y(kL), where y(kL) = [y(kL — L+1), -+, y(kL)]T. The
transformed error E} (1) is an element of the DFT of [z7,



eT(kL)]T, where z is an L x 1 zero vector. By omitting
the gradient constraint in Fig. 1, we concentrate on the un-
constrained case where we can formulate the equation for

updating H;,(1) as

Hia(D=Hl)+ - g( BiD)].| X (1)) /PP (2)

where gy, and Oxy, denote phases of Ej(I) and Xj/(1)
respectively, g(|Ex(1)|, | Xk (1)|) is an arbitrary function of
|Ex(1)] and | X (1)], which we simply denote as g(-) below,
and p is a step-size with value determined by what g(-) is.

In the unconstrained fast (or frequency domain) LMS
(UFLMS) [4] case,

| X (1)]

g(1E (D], [ Xk(D]) = |ER(1)] Pell)

3)

where Py (1) is the smoothed power of X (I) as obtained
by using a smoothing factor a: Py(n) = (1—a)Pg_1(n)+
alXk(n)[?.

2.2. Frequency domain sign-sign algorithm

Our purpose in this paper is to find a desirable g(-) that
provides both strong double-talk stability and fast conver-
gence. As an example of a robust algorithm, we review the
frequency domain sign-sign algorithm (FSSA) [12], which

has
g(|Ex(D],| Xk (D)) =1. 4)

While the time domain sign-sign algorithm (SSA) is known
to be computationally efficient, its convergence is very slow
[5,7]. The FSSA achieves relatively faster convergence, es-
pecially for the colored reference, since its adaptation does
not depend on the reference signal’s level: | X (1)|. Since
the FSSA estimates only the phase difference 0 g — 0 x 11,
it is robust against noise in the error as long as the phase
difference is random. However, the FSSA has a similar
property to the SSA, in that its region of convergence is a
ball around the true solution with radius proportional to the
step-size p [6]. This imposes some limit on the accuracy of
convergence.

3. NEW ROBUST ALGORITHM

3.1. Scalable nonlinearities

For robust adaptation, the error estimation is important, i.e,
to what extent are the near-end signals included in the error?
The error-to-reference ratio (ERR) is useful as a means for
estimating the influence of the near-end signals in the error.
In the single-talk case of the far-end talker, the ERR does
not exceed the acoustic coupling level (ACL) between the
loudspeaker and the microphone, unless the adaptive filter
diverges. In the double-talk case, the range of the ERR is
widely distributed with the ratio between the averaged lev-
els of the far- and near-end signals as its mean. So we can
expect different distributions of the ERR for the single- and
double-talk cases. It is reasonable to limit the ERR to the
level expected during single-talk. Taking this into account,
we define g(-) for a new robust version of the UFLMS as

|Ek(l)|) | XD)?
X)) PLl)

where ¥p(a) = min{a, b}, which is known as the Huber
function [3], and S; is a (limiter) threshold. S; can be
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determined from the ACL and the averaged level balance
between the near- and far-end signals. We can choose a
fixed S according to the specifications of the real system in
which the algorithm is to be implemented.

3.2. Gradient-limited FLMS algorithm
An alternative to (5) is given below

(6)

g(|ELD)],| XD)|) = ¢s, <|Ek(l)| |Xk(l)|> .

Py(1)

Equation (6) is a gradient-limited version of (3). We call the
algorithm with (6) the gradient-limited FLMS (GL-FLMS).
If |[Ex ()| - | Xk (1)|/Pr(l) > Sy, it corresponds to the FSSA
in (4). The stability of the GL-FLMS is sufficiently en-
sured if 4 is chosen from within the stability bounds of the
UFLMS. Since there is no essential difference between (5)
and (6), in the discussion below, we take (6) as the simpler
example.

3.3. Interpretation and improvement

As shown in Fig. 2 (a), Sy corresponds to the slope of the
region boundary in the reference-error plane. The region
Ra is for when far-end single-talk is expected and the fil-
ter is thus updated by the UFLMS. The region Rb is for
when double-talk is expected and the filter is thus updated
by the FSSA. Though echo path changes may be covered
by the region Rb, the FSSA can still adapt to them with-
out serious loss of convergence rate. On the other hand,
Fig. 2 (b) shows the form of segmentation used in several
conventional approaches [8, 10, 11]. The regions are sep-
arated by time-variant boundaries that are perpendicular to
the reference or error axis. Separating the double-talk re-
gion requires adequate and frequent boundary control.

If the maximum of the ACL is known or we can expect
it to be bounded by a maximum level S5, the region Rb in
Fig. 2 (a) can be separated into Rb1 and Rb2 (Fig. 2 (c)).
In the region Rb2, near-end single-talk is expected, while
double-talk is expected in the region Rbl. Thus, by more
strongly limiting the amount of updating in the region Rb2,
the accuracy of convergence can be improved. An improved
variant of the GL-FLMS is thus
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4., SIMULATION
4.1. Comparisons with conventional algorithms
We compared the GL-FLMS based on (7) with the UFLMS
based on (3) and some robust algorithms shown below.

4.1.1. Conventional method I

When we apply one conventional approach [8] to (3), we
obtain

P (DX (D]
P + PR
where By, (1) is a time-variant threshold based on the esti-
mated noise level. The noise level estimate is updated if the
error level is above the filter’s output level.

4.1.2. Conventional method 11
The approaches [10, 11] correspond to

| EW(1)]
s(1) )

where ko(!) is a constant, and the scale factor s(l) is con-
trolled with a DTD.

4.1.3. Results

The conditions were as follows. The desired echo was made
by using a 1024-tap echo path with the average ACL of 0
dB. The sampling rate was 16 kHz. The smoothing factor
o was 0.8 in all cases. For the GL-FLMS, S; = 0.5 and
Sy = 2. For conventional methods I and 11, the parameters
were basically those given in [8] and [11] respectively, al-
though some of them, such as noise level estimating param-
eters, were rescaled to take the sampling rate, block size, or
tap length into account. We chose the step-sizes to achieve
the same steady-state echo return loss enhancement (ERLE)
for a stationary signal input with averaged speech spectrum.
White Gaussian noise was added to the echo as ambient
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Fig. 5. Comparisons with different methods (double-talk).

noise with an overall echo-to-noise ratio (ENR) of 20 dB.
As a result, p = 0.2 (UFLMS), © = 0.23 (conventional
I), u = 0.2 (conventional 1), and y = 0.32 (GL-FLMYS),
respectively.

The results for the speech signals were obtained in the
following way. The far- and near-end signals (Fig. 3) were
male and female speech, respectively. The average ENR
was 20 dB. To ensure minimum stability for all algorithms,
the adaptation was frozen when the far-end signal level was
smaller than 12 dB below an average signal level. The echo
path was changed at 3 seconds. Figure 4 shows the results
for ERLE performance in the single-talk case where there
was no near-end speech. The near-end signals were ex-
cluded in calculating the ERLEs. We can see that conven-
tional method I and the GL.-FLLMS were more robust against
ambient noise than the UFLMS and conventional method
II. Figure 5 shows the results for ERLE performance in the
double-talk case. The GL-FLMS showed the best robust-
ness. We applied an ‘ideal” DTD with advance detection of
the near-end speech to conventional IT only.

Although there might be other parameter choices with
which the conventional methods would have performed bet-
ter, note that the GL-FLMS displayed its robust perfor-
mance even when the parameters were fixed and chosen in
a simple and reasonable way.

4.2. Dependence on environmental conditions

The dependences of performance on the near- and far-end
level balance and the ACL were examined. The conditions
were the same as in 4.1, except as specified below.

To evaluate the dependence on level balance, three kinds
of level combinations were tested by scaling the signals in
Fig. 3 as follows: (a) the far-end signal by +6 dB and the
near-end signal by -6 dB, (b) the far-end signal by -6 dB
and the near-end signal by +6 dB, and (c) the original far-
and near-end signals. Since the ambient noise level was un-
changed, the ERLEs behaved differently according to the
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ENRs. So the mean square error (MSE), as calculated with
the near-end speech excluded, was used to compare the ab-
solute residual echo levels. Figure 6 shows results obtained
without the near-end signal. This indicates the dependence
on reference input level during single-talk. The residual
echoes converged to a similar steady-state level in all cases.
Figure 7 shows results obtained in the double-talk case. In
cases (a) and (b), despite the 12 dB of level difference, no
notable degradation from case (c) was observed.

The dependence on ACL was evaluated by comparing
the performance in these three cases: (a) average ACL =
+10 dB, (b) average ACL = -10 dB, and (c) average ACL
= 0 dB. The far- and near-end signals of Fig. 3 were used
again. Figure 8 shows the MSEs obtained for the single-
talk case. The differences between Fig. 6 and Fig. 8, es-
pecially in the steady-state, were due to the fixed reference
threshold used to freeze adaptation for all of the simulations
that involved speech. Figure 9 shows MSEs obtained in the
double-talk case. Once the residual echo converged to the
steady-state level, the ACL differences did not affect the ro-
bustness against double-talk.

5. CONCLUSIONS

We have proposed a double-talk robust frequency domain
algorithm: the gradient-limited FLMS (GL-FLMS), which
nonlinearly controls the sizes of updates according to the
error-to-reference ratio. Unlike some conventional robust
algorithms, the GL-FLMS achieves its robustness with fixed
thresholds predetermined on the basis of the averaged level
balance of the far- and near-end signals and the bounds on
acoustic coupling level expected in real situations. The al-
gorithm’s effectiveness and reasonableness have been con-
firmed through simulation.

6. ACKNOWLEDGEMENTS

We would like to thank Dr. H. Ohara for fruitful discussions
and helpful suggestions.

26

[11
[2]

[3]
[4]

[51

[6]

[71

[8]

[9]

[10]

[11]

[12]

100

90

[dB]

80 \ ,,\ s
AN ) . A

M ML PN By “\
RS ’\\ SV v\,\ﬂ SN

MSE

A r
A\
RN

70

60
0

5 10 15 20 25 30
Time [s]

Fig. 8. Dependence on ACL (single-talk).

100 T

90

[dB]

: B ’
gop ! ! ' . fr i

MSE

70 ¢

60 L . L . L
0 5 10 15 20 25 30
Time [s]

Fig. 9. Dependence on ACL (double-talk).

7. REFERENCES

M. M. Sondhi, “An adaptive echo canceller,” Bell Syst. Tech.
J., vol. XLVI, no. 3 pp. 497-511, Mar. 1967.

K. Ochiai, T. Araseki, and T. Ogihara, “Echo canceller with
two echo path models,” IEEE Trans. Communications, vol.
COM-25, no. 6 pp. 589-585, Jun. 1977.

P. J. Huber, Robust statistics. Wiley, New York, 1981.

D. L. Duttweiler, “Adaptive filter performance with nonlin-
earities in the correlation multiplier,” IEEE Trans. Acoust.,
Speech, Signal Processing, vol. 30, no. 4, pp. 578-586, Aug.
1982.

D. Mansour and A. H. Gray Jr., “Unconstrained frequency-
domain adaptive filter,” IEEE Trans. Acoust., Speech, Signal
Processing, vol. ASSP-30, no. 5, pp. 726-734, Oct. 1982.

A. Dasgupta, C. R. Johnson, Jr., and A. M. Baksho, “Sign-
sign LMS convergence with independent stochastic inputs”,
1EEE Trans. Irformation Theory, vol. 36, no. 1, pp. 197-201,
Jan. 1990.

W. A. Sethares, “Adaptive algorithm with nonlinear data and
error functions,” IEEE Trans. Signal Processing, vol. 40,
n0.9, pp. 2199-2206, Sep. 1992.

A. Hirano and A. Sugiyama, “A noise-robust stochastic gra-
dient algorithm with an adaptive step size suitable for mobile
hands-free telephones”, Proc. ICASSP95, vol. 2, pp. 1392-
1395, May 1995.

Y. Haneda, S. Makino, J. Kojima, and S. Shimauchi, “Im-
plementation and evaluation of an acoustic echo canceller
using duo-filter control system,” Proc. EUSIPC096, vol. 2,
pp. 1115-1118, Sep. 1996.

T. Génsler, “A robust frequency-domain echo canceller”,
Proc. ICASSP97, vol. 3, pp. 2317-2320, Apr. 1997.

T. Ginsler, S. L. Gay, M. M. Sondhi, and J. Benesty,
“Double-talk robust fast converging algorithms for network

echo cancellation”, IEEE Trans. Speech and Audio, vol. 8,
no. 6, pp. 656-663, Nov. 2000.

S. Shimauchi, Y. Haneda, and A. Kataoka, “Study on fre-
quency domain echo canceller based on higher order statis-
tics”, Proc. Spring Mtg. Acoust. Soc. Japan, pp. 615-616,
Mar. 2003 (in Japanese).



	Page23: 23
	Header: International Workshop on Acoustic Echo and Noise Control (IWAENC2003), Sept. 2003, Kyoto, Japan
	Page24: 24
	Page25: 25
	Page26: 26


