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ABSTRACT

The performance of linear acoustic echo cancelers degrades if non-
negligible nonlinear distortion is introduced into the echo path as,
e.g., caused by low-cost loudspeaker systems driven at high vol-
ume. Adaptive second-order Volterra filters are known to effec-
tively model nonlinear acoustic echo paths. In this contribution
we propose an extension of the proportionate NLMS (PNLMS) to
second-order Volterra filters. For the case that the amplitude of the
input has an even probability density function a simplification of
that algorithm is introduced, including an adaptation control which
is crucial especially for nonstationary input. Simulation results
show that the proposed algorithm leads to an increased conver-
gence speed compared to an NLMS-based adaptive Volterra filter.
An important feature of the presented approach is the inherent in-
variance of the performance of the adaptation with respect to a
scaling of the input/output signals.

1. INTRODUCTION

The general set-up of the acoustic echo cancellation problem is
shown in Figure 1. The acoustic echo canceler (AEC) seeks toPSfrag replacements
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Fig. 1. General set-up of the acoustic echo cancellation problem.

minimize the power of the error signal e(n) by subtracting an es-
timate of the echo signal y(n) from the microphone signal d(n).
Standard approaches for the cancellation of acoustic echos rely on
the assumption that the echo path to be identified can be mod-
eled by a linear filter. However, in some practical situations loud-
speaker systems introduce nonnegligible nonlinear distortions, e.g.,
caused by low-cost loudspeakers driven at high volume. With this
nonlinear distortion, the performance of a linear acoustic echo can-
celer degrades and furthermore, greatly impairs quality of voice
communication. Thus, nonlinear models have to be considered. A
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common approach to modeling the nonlinear behaviour of loud-
speakers is given by finite length second-order Volterra filters [1].
However, adaptive Volterra filters applying an NLMS algorithm
are known to suffer severely from slow convergence speed, espe-
cially for correlated excitation signals [2]. The recently proposed
improved PNLMS [3], based on [4], provides a faster initial con-
vergence of the adaptive filter coefficients, especially for sparse
echo paths. In Figure 2 a typical quadratic Volterra kernel is shown
that has been obtained from measurement of a small loudspeaker
placed in an enclosure with low reverberation. Obviously, the
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Fig. 2. Quadratic Volterra kernel measured for a small loud-
speaker.

quadratic kernel can be considered as sparse and thus, a PNLMS-
type adaptation algorithm for Volterra filters is desirable. In this
paper a general extension of the linear PNLMS to adaptive second-
order Volterra filters is proposed first, and then a simplified version
for specific input signals is introduced. The suitability of the pro-
posed approaches with respect to a nonlinear acoustic echo can-
cellation application is validated by simulation results.

2. SECOND-ORDER VOLTERRA FILTERS

The input/output relation of a second-order Volterra filter is given
by

y(n) =

N1 � 1�
l=0

h
(1)
l (n)x(n � l)

+

N2 � 1�
l1=0

N2 � 1�
l2=l1

h
(2)
l1,l2

(n)x(n � l1)x(n � l2). (1)



To obtain a compact vector representation of (1) we define

x1(n) = [x(n), x(n � 1), . . . , x(n � N1 + 1)]T , (2)

h1(n) = � h(1)
0 (n), h

(1)
1 (n) . . . , h

(1)
N1 � 1(n) � T

, (3)

x2(n) = � x2(n), x(n)x(n � 1), . . . , x(n)x(n � N2 + 1),

x2(n � 1), . . . , x2(n � N2 + 1) � T , (4)

h2(n) = � h(2)
0,0(n), h

(2)
0,1(n), . . . , h

(2)
0,N2 � 1(n),

h
(2)
1,1(n), . . . , h

(2)
N2 � 1,N2 � 1(n) � T , (5)

h(n) = � hT
1 (n) h

T
2 (n) � T , (6)

x(n) = � xT
1 (n) x

T
2 (n) � T

. (7)

The vector length of x1(n) and h1(n) is L1 = N1, the length of
x2(n) and h2(n) is L2 = N2(N2 + 1)/2, and the length of x(n)
and h(n) is L = L1 + L2. Then, (1) can be expressed by

y(n) = h
T (n)x(n) (8)

in a compact way.

3. PNLMS ALGORITHM FOR ADAPTIVE
SECOND-ORDER VOLTERRA FILTERS

3.1. PNLMS algorithm for linear adaptive filters

The PNLMS algorithm for linear adaptive filters in its improved
version according to [3] can be summarized as follows:

e1(n) = d(n) � h
T
1 (n)x1(n), (9)

h1(n + 1) = h1(n) + µ
K(n)x1(n)e1(n)

xT
1 (n)K(n)x1(n)

, (10)

K(n) = diag 	 k0(n), . . . , kL1 � 1(n) 
 , (11)

kl(n) =
(1 � α)

2L1
+ (1 + α) ���

h
(1)
l (n) ���2 � h1(n) � 1 , (12)

where the 1-norm of h1(n) is defined as

� h1(n) � 1 =

L1 � 1�
l=0 ���

h
(1)
l (n) ���

. (13)

From the definition of kl(n) in (11) we notice that the first term
corresponds to an NLMS update, whereas the second term intro-
duces the idea of making the update of a coefficient proportionate
to its significance compared to the other coefficients of the adap-
tive filter. The significance of a coefficient is described here as the
ratio of its absolute value compared to 1-norm of the filter vector.
For stationary input x(n), the statistics of the excitation of the el-
ements of h1(n) is equal for each element. Thus, the second term
in (12) can also be interpreted as being proportionate to the relative
contribution of the coefficient to the output signal y(n).

3.2. Extension to second-order Volterra filters

Regarding the definition of x(n) in (7), it is obvious that the statis-
tics of the elements of x(n) are in general not equal, implying that
the statistics of the excitation of different elements of h(n) are in

general not equal for each coefficient. Assuming stationary input
in the following, we obtain for the second-order moment of the
j-th element of x(n), denoted by xj(n):

σ2
j = �� x2

j (n) � (14)

= �  � x2(n) � , if xj(n) � x1(n) � x2(n � l1)x
2(n � l2) � , if xj(n) � x2(n).

As a consequence, a coefficient can have a significant value on the
one hand, but its contribution to the output signal is only marginal
on the other hand, if the power of the corresponding excitation
signal xj(n) is very small. Therefore, a straightforward extension
of the linear PNLMS to Volterra filters, i.e., replacing x1(n) by
x(n), and replacing h1(n) by h(n) in (9)-(12), would not result
in a suitable PNLMS algorithm for Volterra filters. Aiming at an
algorithm that promotes the update of coefficients with large sig-
nificance with respect to the computation of the output signal, we
introduce a signal dependent norm of the filter coefficients, i.e.,�

hj(n)
�
x

=
�
hj(n)

�
σj , (15)

where σj = �  � x2
j (n) � and hj(n) denotes the j-th element of

h(n). Accordingly, we introduce the signal dependent 1-norm of
the coefficient vector h(n)

� h(n) �
x

=

L � 1�
l=0

�
hl(n)

�
x

. (16)

With these signal dependent norms we define the diagonal matrix

G(n) = diag 	 g0(n), . . . , gL � 1(n) 
 , (17)

where

gl(n) =
(1 � α)

2L
+ (1 + α)

�
hl(n)

�
x

2 � h(n) �
x

. (18)

Comparing (12) with (18) we notice that G(n) can be considered
as the step-size adjustment matrix of the PNLMS algorithm ac-
cording to [3] applied to h̃l(n) = hl(n)σj . Introducing the diag-
onal matrix

S = diag 	 σ0, . . . , σL � 1 
 , (19)

we define

h̃(n) = Sh(n), (20)

x̃(n) = S � 1
x(n), (21)

and rewrite the computation of y(n) according to (8) as

y(n) = h̃
T (n)x̃(n). (22)

The update equation of h̃(n) applying a PNLMS-type algorithm
according to [3] is then given by

h̃(n + 1) = h̃(n) + µ
G(n)x̃(n)e(n)

x̃T (n)G(n)x̃(n)
. (23)

Finally, the update equation for the Volterra filter coefficients h(n)
is obtained by left-multiplying (23) by S � 1 and taking the defini-
tions (20), (21) into account, i.e.,

h(n + 1) = h(n) + µ �G(n)x(n)e(n)

xT (n) �G(n)x(n)
, (24)



where the abbreviation

�G(n) = S � 1
G(n)S � 1 (25)

for the normalized version of G(n) has been introduced. For an
implementation of the proposed algorithm one can either compute
y(n) according to (22) and apply the update equation for h̃(n)
according to (23), or use the corresponding combination of (8) and
(24), instead.

Note that for the pure linear case, i.e., x(n) = x1(n) and
h(n) = h1(n) (implying L1 = L and e1(n) = e(n)), the pro-
posed algorithm simplifies to the linear PNLMS algorithm accord-
ing to Section 3.1, i.e. [3], as in this case�

h1,l(n)
�
x

2 � h1(n) �
x

=

�
h1,l(n)

�
2 � h1(n) � 1 (26)

and thus G(n) = K(n). Observing that S = σ0I, where I de-
notes the identity matrix, the update equation for h1(n) according
to (24) simplifies to (10).

3.3. Simplified version for non-general input

The PNLMS algorithm presented in the last section requires the
estimation of S, implying the estimation of second- and fourth-
order moments of the input signal x(n) which is usually unreliable
for short observation intervals as required for nonstationary input
signals such as speech. If we assume that the elements of x1(n)
and x2(n) are approximately orthogonal,i.e.,1

�	 x(n � i)x(n � j)x(n � l) 
�� 0, (27)

the linear and quadratic Volterra kernels can be adapted separately.
In the following we present a simplification of the general ap-
proach according to Section 3.2 which does not rely on the esti-
mate of S. As already discussed in the last section, the separate
adaptation of the linear kernel h1(n) can be performed according
to (10) which corresponds to [3]. In general, (26) does not hold
for the quadratic Volterra kernel h2(n), as the elements of x2(n)
are not just samples of the same signal taken at different time in-
stants, as it can be seen from (4). However, if we introduce the
approximation

 � x2(n � i)x2(n � j) � �� � x4(n � i) � (28)

for i, j ��	 0, . . . , N2 � 1 
 , we obtain�
h2,l(n)

�
x

2 � h2(n) �
x

� �
h2,l(n)

�
2 � h2(n) � 1 . (29)

Then, the separate adaptation of h2(n) can be performed using the
corresponding version of (10).

Although (27) implies that the Volterra kernels can be adapted
separately from each other, unstable behaviour of the adaptive Vol-
terra filter has been observed in simulation, especially in the begin-
ning of the adaptation or after a change of the echo path. The rea-
son for this behaviour is that the error introduced by a misadjusted
linear kernel acts as a distortion for the adaptation of the quadratic

1Assuming that x(k) is an i.i.d. process, (27) is fulfilled if the proba-
bility density function (PDF) of the amplitude of x(k) is an even function,
i.e. fX(x) = fX( � x). Although this assumption is unrealistic for speech
input, experimental results indicate that (27) is sufficiently fulfilled in prac-
tical situations.

kernel and vice versa. Thus, a control of the adaptation is crucial.
With e1(n) = d(n) � h1(n)T

x1(n) we define

e2
1(n) = λe2

1(n � 1) + (1 � λ)e2
1(n), (30)

e2(n) = λe2(n � 1) + (1 � λ)e2(n), (31)

where the forgetting factor λ is chosen close to 1. The error signal�
e1(n) = � e1(n), if e2

1(n) < e2(n)
e(n), if e2

1(n) � e2(n),
(32)

is then used for the adaptation of the linear kernel, whereas the er-
ror signal

�
e2(n) = e(n) applies for the adaptation of the quadratic

kernel.
�
e1(n) also represents the signal transmitted to the far-end.

The simplified version of the algorithm can be summarized by

hi(n + 1) = hi(n) + µ
Ki(n)xi(n)

�
ei(n)

xT
i (n)Ki(n)xi(n)

, (33)

Ki(n) = diag 	 ki,0(n), . . . , ki,Li � 1(n) 
 , (34)

ki,l(n) =
(1 � α)

2Li

+ (1 + α)

�
hi,l(n)

�
2 � hi(n) � 1 , (35)

for i ��	 1, 2 
 , where hi,l(n) denotes the l-th element of the
coefficient vector hi(n). With the above adaptation control, the
quadratic Volterra kernel acts as a shadow filter that is only used
for the echo cancellation, if a reduction of the power of the resid-
ual error is achieved, whereas otherwise, the AEC corresponds to
a linear adaptive filter.

3.4. Signal gain invariance

Neglecting the nonlinearity of the quantization, the analog-to-digital
(A/D) conversion of a continuous time signal sc(t) (e.g. measured
as voltage) to its corresponding discrete time representation s(n)
can be expressed by

s(n) =
sc(nT )

So

, (36)

where 1
T

is the sampling rate and So is the maximum input. This
representation will be useful for the following considerations. Dif-
ferent A/D-converters can have different values for So, resulting
in different values of the discrete time signal for the same analog
signal sc(t), i.e.,

s̆(n) =
sc(nT )

S̆o

= C s(n). (37)

In the following the˘over a signal indicates a scaling according to
(37). However, an adaptive algorithm should be invariant with re-
spect to a different scaling of the discrete time signals, in order to
be independent from the hardware used for the signal acquisition.
Here, gain invariance of an adaptive algorithm for echo cancella-
tion is understood as

�� d2(n) ��	 e2(n) 
 !
=
� d̆2(n) !�	 ĕ2(n) 
 , (38)

i.e., the relative echo attenuation is invariant with respect to a scal-
ing of the discrete time signals. Regarding that x̆1(n) = C x1(n)
and x̆2(n) = C2

x2(n) if x̆(n) = Cx(n), we have

y̆(n) = v
T
1 (n)x̆1(n) + v

T
2 (n)x̆2(n) (39)

C y(n) = C h
T
1 (n)x1(n) + C h

T
2 (n)x2(n)

= h
T
1 (n)x̆1(n) +

1

C
h

T
2 (n)x̆2(n). (40)



Comparing (39) with (40), the requirements for (38) are given by

h1(n) = v1(n) " h2(n) = C v2(n) # n. (41)

It is straightforward to show that the update equation (24) of the
PNLMS algorithm for second-order Volterra filters fulfills (41),
if the initialization of the coefficient vectors is chosen such that
h1(0) = v1(0) and h2(0) = C v2(0) (which is, e.g., achieved
by initializing all coefficients with zero) and the same value for
the step-size parameter µ is used. Accordingly, it can be shown
that the simplified update version (33) is signal gain invariant if
h1(0) = v1(0) and h2(0) = C v2(0). The NLMS algorithm for
Volterra filters usually referred to in the literature (see e.g. [2]) is
given by the update equation

h(n + 1) = h(n) + µ
x(n)e(n)

xT (n)x(n)
. (42)

Note that the behaviour of the NLMS according to (42) is not input
gain invariant, i.e., it does not fulfill (38), whereas applying the
proposed general PNLMS with α = � 1 represents a gain invariant
version of the NLMS. As a consequence, the performance of the
NLMS algorithm according to [2] degrades for specific values of
C, e.g., if  � x̆2(n) �%$  � x̆4(n) � holds.

4. SIMULATION RESULTS

To evaluate the performance of the different versions of the PNLMS
algorithm for second-order Volterra filters we present simulation
results obtained for an acoustic echo cancellation application. In
the first experimental set-up the echo path has been modeled by a
second-order Volterra filter (with memory lengths of 400 taps and
80 taps for the linear and quadratic kernel, respectively), where the
quadratic kernel is shown in Figure 2. To evaluate the performance
of the adaptive algorithms we consider

ERLE = 10 log10

&� y2(n) �'	 e2(n) 
 . (43)

The ERLE graphs resulting from a linear PNLMS [3] (with α =
0), a linear NLMS, the proposed general PNLMS for second-order
Volterra filters with α = 0, a second-order Volterra filter using
NLMS adaptation, i.e. α = � 1, are shown in Figure 3. The ex-
citation has been colored noise and an SNR of 35dB has been
preset. For a fair comparison, the step-size parameters µ for the
linear kernels and the linear approaches have been chosen equally.
The step-sizes for the quadratic kernels have been the same for
both, NLMS and PNLMS algorithm. It can be noticed that the
proposed PNLMS for second-order Volterra filters clearly outper-
forms a NLMS-based Volterra filter in terms of convergence speed.
It can also be seen that a remarkable increase of achievable echo at-
tenuation is obtained by taking the nonlinearities in the echo path
into account. The ERLE graphs presented in Figure 4 base on
recorded speech data from a low-cost loudspeaker in an enclo-
sure with low reverberation, where the proposed simplified ver-
sion of the PNLMS including the adaptation control has been ap-
plied for α = 0. The adaptation control has also been used for
α = � 1 which corresponds to a respective NLMS algorithm for
Volterra filters. The simplified PNLMS algorithm for Volterra fil-
ters shows an increased convergence speed compared to a corre-
sponding NLMS-based Volterra filter. The increase of echo at-
tenuation obtained for the Volterra filter with PNLMS adaptation
compared to the linear PNLMS algorithm is also significant, espe-
cially during periods of high excitation levels.
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Fig. 3. ERLE for linear and nonlinear echo cancellation using
different adaptive approaches for stationary colored noise input.
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Fig. 4. ERLE for linear and nonlinear echo cancellation using
different adaptive approaches. The excitation has been speech.

5. CONCLUSION

We have presented an extension of the linear PNLMS algorithm to
second-order Volterra filters. A simplified version of the general
approach, where the linear and the quadratic kernels are adapted
separately has been introduced for the case that the amplitude of
input signal has an even PDF, including a simple but essential
adaptation control. The input gain invariance of the performance
of the approaches has been discussed. Simulation results have
shown that the proposed algorithms provide an increased conver-
gence speed compared to the NLMS algorithm for Volterra filters
and an increased echo attenuation compared to a pure linear AEC
for a nonlinear echo path.
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