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ABSTRACT

Determining the spatial position of a speaker finds a grow-
ing interest in video conference scenario where automated
camera steering and tracking are required. As a preliminary
step for the localization, microphone array can be used to
extract the time difference of arrival (TDOA) of the speech
signal. The direction of arrival of the speech signal is then
determined by the relative time delay between each, spa-
tially separated, microphone pairs. In this work we present
novel, frequency domain, approaches for TDOA calculation
in a reverberant and noisy environment. Our methods are
based on the speech quasi-stationarity property, and on the
fact that the speech and the noise are uncorrelated. The pro-
posed methods are supported by an extensive experimental
study.

1 Introduction and Model Assumptions

The most common technique for extracting the TDOA is
the generalized cross correlation (GCC) [1]. However this
method assumes that the acoustical transfer function (ATF),
which relates the source and each of the microphones, is a
pure delay. This approximation was shown to be inaccurate
in reverberant conditions [2], which frequently occur in en-
closed environments. Additionally, in low SNR levels, the
GCC method cannot distinguish between the speaker and a
directional interference, as it tends to estimate the TDOA
of the stronger signal. Approaching our problem from a
more realistic point of view, the noisy speech observations
are given by:

zm(t) = am(t) ∗ s(t) + bm(t) ∗ n(t); m = 1, . . . , M (1)

where zm(t) is the m-th microphone signal, s(t) is the source
signal, and n(t) is a directional interference signal. am(t) and
bm(t) are ATF-s relating the desired speech source and the
noise interference with the m-th microphone, respectively.
M is the number of microphones in the array. We assume
that the interfering noise n(t) is stationary and that uncor-
related thermal noise effects can be neglected. Using the
more accurate model in (1), several methods were proposed
for solving the localization problem under reverberant condi-
tions. Some of these improve the basic GCC method. Others
utilize subspace methods for estimating the ATF-s, and then
determine the TDOA by finding the difference of their cor-
responding peaks [3]. In this contribution the ATF-s ratio
is estimated, rather than the ATF-s themselves.

Let Am(ω) and Bm(ω) be the frequency responses of
the m-th ATF am(t) and bm(t), respectively. Define the

speech and noise ATF-s ratios by Hm(ω) , Am(ω)
A1(ω)

and

Gm(ω) , Bm(ω)
B1(ω)

respectively. Denote the inverse Fourier

transform of Hm(ω) by hm(t). (Note that since ATF-s are
usually not minimum-phase, hm(t) is non-casual). Experi-
mental study shows that the location of the maximal peak
of hm(t) usually suffices for determining the TDOA. An un-
biased method for estimating Hm(ω), exploiting the speech
signal non-stationarity, was presented in [4]. Here, we extend
the existing method by imposing decorrelation between the
speech and the noise signals.

The organization of the rest of the paper is as follows.
In Section 2 we introduce the decorrelation criterion as a
tool for extracting the TDOA. A method for exploiting the
speech non-stationarity, contrasted against noise stationar-
ity, is reviewed in Section 3. Batch and recursive solutions
for the resulting non-linear set of equations are presented
in Sections 4 and 5, respectively. An experimental study is
given in Section 6.

2 Decorrelation Criterion

The observations zm(t); m = 1, . . . , M are a mixture of s(t)
and n(t), with the power spectral density (PSD) matrix:

Pz1zm(ω) ,
�

Φz1z1(ω) Φz1zm(ω)
Φzmz1(ω) Φzmzm(ω)

�
(2)

where Φzizj = Ai(ω)A∗j (ω)Φss(ω) + Bi(ω)B∗
j (ω)Φnn(ω).

Φss(ω) and Φnn(ω) stand for the speech and noise PSD,
respectively. ∗ stands for conjugation. Knowing that s(t)
and n(t) are uncorrelated, we wish to construct a decor-
related output. That is, we wish to apply an unmixing
matrix U(ω) which diagonalize the PSD matrix R(ω) ,
U(ω)Pz1zm(ω)U†(ω) († stands for Hermitian conjugation).
Without loss of generality, we can set U(ω) to the form

U(ω) =
�

u1(ω) −1
−u2(ω) 1

�
which yields the (nonlinear) decorrela-

tion criterion:

u∗2(ω) (Φzmz1(ω)− u1(ω)Φz1z1(ω)) = (3)

Φzmzm(ω)− u1(ω)Φz1zm(ω)

Eq. (3) is a single nonlinear equation in two unknowns.
However, by exploiting the quasi-stationarity of the speech,
Eq. (3) becomes a set of equations, obtained by evaluating
the PSD-s at different frame indices:

u∗2(ω)
�
Φ̂zmz1(t, ω)− u1(ω)Φ̂z1z1(t, ω)

�
≈ (4)

Φ̂zmzm(t, ω)− u1(ω)Φ̂z1zm(t, ω) ; t = 1, . . . , N

where Φ̂zizj (t, ω) stands for the appropriate PSD estimation
at the t-th frame and N is the number of available frames.
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Note that the pair {u2(ω) = Gm(ω), u1(ω) = Hm(ω)} as
well as the pair {u1(ω) = Gm(ω), u2(ω) = Hm(ω)} solves the
equations at hand. This is referred to as the frequency per-
mutation ambiguity problem. We will address this problem
in the sequel.

Eq. (4), which was derived in [5], constitutes a set of non-
linear equations. In [5] it is suggested to solve the equation
set iteratively, by assuming a simplified FIR model for the
mixing channels and conducting the solution in the time do-
main. To maintain simplicity of the solution, we wish to
solve the problem in the frequency domain. Thus, the fre-
quency permutation problem, mentioned earlier, have to be
addressed.

3 Exploiting Noise Stationarity

The frequency permutation problem can be resolved by
proper initialization of (4). This initialization can be ob-
tained by using the method derived in [4], and briefly re-
viewed here. We try to estimate Hm(ω) as the filter re-
lating z1 and zm. Consider an analysis interval for which
the noise signal can be regarded stationary and the ATF-s
time invariant, while the speech signal statistics is changing
(quasi-stationarity assumption for the speech signal). The
noise signal contributes a bias term. This problem can be
avoided by dividing the observation interval into N consecu-
tive frames, resulting an over-determined set of equations for
Hm(ω) and the bias term. This set can be solved by virtue
of the least squares (LS) method:

Φ̂zmz1(t, ω) = (5)

Hm(ω)Φ̂z1z1(t, ω) + Φb1(ω) + ξ(k, ω); t = 1, . . . , N

where Φb1(ω) is a noise-only bias term, independent of the
frame index due to its stationarity. Ideally,

Φb1(ω) = (Gm(ω)−Hm(ω)) |B1(ω)|2 Φnn(ω). (6)

ξ(k, ω) are error terms we wish to minimize. The over-
determined set in (5) will be called the first form of sta-
tionarity (S1 for brevity). Equivalently, a second form of
stationarity can be formulated as:

Φ̂zmzm(t, ω) = (7)

Hm(ω)Φ̂z1zm(t, ω) + Φbm(ω) + ξ2(k, ω); t = 1, . . . , N

where

Φbm(ω) = (Gm(ω)−Hm(ω))B1(ω)Bm
∗(ω)Φnn(ω) (8)

is a stationary noise-only term as well. Note that Eqs. (6)
and (8) are related to the decorrelation equation (3) by

setting u∗2(ω) =
Φbm (ω)

Φb1 (ω)
= G∗m(ω).

4 Batch Solutions for the Nonlinear Decorrelation
Equations

Several methods are derived for solving the nonlinear set (4).
Here we will address two of them.

4.1 Linear Decorrelation (LD)

Calculate Φb1(ω) from (5) and Φbm(ω) from (7). Set

u2(ω)∗ =
Φbm (ω)

Φb1 (ω)
and solve the set (4), for evaluating u1(ω).

This procedure has a twofold advantage. First, using this ini-
tialization, the set (4) becomes a linear set in u1(ω). Thus,
LS solution (or, for tracking purposes, a recursive LS (RLS)
solution) can be applied. Second, by setting u∗2(ω) = G∗m(ω),
u1(ω) is constrained to be Hm(ω), thus overcoming the fre-
quency permutation problem.

4.2 Joint Decorrelation and First Form of Station-
arity via Gauss iterations (GS1)

A different method for resolving the frequency permutation
problem is obtained by solving Eqs. (4) and (5) simultane-
ously. Concatenating these equations we get,"

Φ̂zmzm
(ω)

Φ̂zmz1
(ω)

#
≈ (9)

"
Φ̂z1zm

(ω) Φ̂zmz1
(ω) −Φ̂z1z1

(ω) 0

Φ̂z1z1
(ω) 0 0 1

#264 Hm(ω)
G∗m(ω)

Hm(ω)G∗m(ω)
Φb1(ω)

375
where Φ̂zizj

(ω) , [Φ̂zizj (1, ω), . . . , Φ̂zizj (N, ω)]T and 0, 1

stand for column vectors (of proper dimensions) of zeros and
ones, respectively. Since the parameter set is nonlinear due
to the multiplicative term Hm(ω)G∗m(ω), we suggest using
several Gauss iterations for obtaining a batch solution.

5 Recursive Solutions for the Nonlinear Decorrela-
tion Equations

In cases where the source is moving, a tracking procedure
is required, and a recursive solution for the nonlinear LS
problem in Eq. (9) is called upon. In Section 5.1 we derive a
general procedure for solving the problem, which we denote
recursive Gauss (RG) procedure. In Section 5.2 we apply
this procedure to the problem at hand.

5.1 Recursive Gauss (RG) Procedure

The method starts by resolving the nonlinearities using first-
order approximation (as with the original Gauss method),
and then deriving a recursion by applying further approxi-
mation. This solution will be referred to as Recursive Gauss
(RG). Consider a nonlinear equation set for the unknown
p× 1 parameter vector θ ∈ Cp:

h1:N (θ) = d1:N

where hT
1:N (θ) , �

hT
1 (θ)· · ·hT

N (θ)
�

and dT
1:N ,

�
dT
1 · · ·dT

N

�
.

ht and dt are K nonlinear equations and K measurements,
available at time instance t, respectively. Applying first-
order approximation around an initial guess θ(0) (as with
the Gauss method) we obtain:

h1:N (θ(0)) + H1:N (θ(0))
�
θ − θ(0)

�
≈ d1:N (10)

where H1:N is the NK × p gradient matrix:

HT
1:N (θ) , �HT

1 (θ)· · ·HT
N (θ)

�
where Ht(θ) = ∇θht(θ) is the K×p gradient matrix of ht(θ).
According to the Gauss method, the iterative LS solution to
the linearized set (10) is:

θ(l+1) =

arg min
θ




d1:N −
�
h1:N (θ(l)) + H1:N (θ(l))

�
θ − θ(l)

��



where the superscript denotes the iteration number. Con-
sider the next measurements hN+1(θ) = dN+1 available at
time instance N + 1. In order to estimate θ we use all the
available measurements simultaneously. Though we could
evaluate all (N + 1)K equations at the current estimate
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θ(l+1), we do so only for the new equations. Namely, in-
stead of minimizing in the LS sense the following residual
norm

min
θ



d1:N+1−�
h1:N+1(θ

(l+1)) + H1:N+1(θ
(l+1))

�
θ − θ(l+1)

��



we will minimize a modified LS problem

min
θ





 d1:N−
dN+1−�

h1:N (θ(l)) + H1:N (θ(l))
�
θ − θ(l)

���
hN+1(θ

(l+1)) + HN+1(θ
(l+1))

�
θ − θ(l+1)

�� 





 .

The reason for this approximation is to keep past solutions
intact, thus enabling a recursive solution to be derived. Now,
using stochastic approximation, i.e. replacing the iteration
index by the time index, a sequential algorithm is obtained.
To summarize the procedure, an estimate for θ at the cur-

rent time instance t (denoted by θ̂(t)) is obtained by solving
the following LS problem sequentially using the recursive LS
(RLS) procedure:

θ̂(t) = arg min
θ









264 H1(θ̂(0))

...

Ht(θ̂(t− 1))

375 θ − y
1:t








 (11)

where

y
1:t

=

264y
1
...
y

t

375 , 264 d1 − h1(θ̂(0)) + H1(θ̂(0))θ̂(0)
...

dt − ht(θ̂(t− 1)) + Ht(θ̂(t− 1))θ̂(t− 1)

375
with θ̂(0) the initial estimate for the parameter set. We note
that in many practical situations the parameter set θ might
slowly vary with time. In these cases, a common practice
is to apply the RLS algorithm with a diagonal weight ma-
trix that uses a forgetting factor 0 < α ≤ 1 to weight past
equations.

Another practical issue concerns the computational bur-
den. At each time instance new K equations become avail-
able, resulting a K ×K matrix inversion at each RLS itera-
tion. However, by properly varying the forgetting factor α,
the computational complexity can be further reduced. This
procedure is beyond the scope of this paper.

5.2 Application of the Recursive Gauss to the
Decorrelation Equations

For the problem at hand (the GS1 procedure) θ ,
[Hm(ω),G∗m(ω), Φb1(ω)]T . Considering the the t-th time in-
stance, for which the gradient matrix Ht is given by (12) and
the measurement y

t
by (13)

y
t
=

�
Φ̂zmzm(t, ω)− Ĥm(t− 1, ω)Ĝ∗m(t− 1, ω)Φ̂z1z1(t, ω)

Φ̂zmz1(t, ω)

�
(13)

where Ĥm(t− 1, ω) and Ĝ∗m(t− 1, ω) are the estimations of
Hm(ω) and G∗m(ω) available after t − 1 measurements, re-
spectively. Then θ is evaluated by solving (11) with RLS
and a forgetting factor α < 1.

6 Experimental Study

In this section we assess the proposed methods (S1, LD,
GS1) and compare them with the classical GCC algorithm
[1]. Two scenarios are tested. First, batch methods are
compared for a static speaker position. Then, the tracking
ability of the recursive methods is demonstrated for a moving
speaker scenario.

6.1 Static Scenario

For the static scenario we used room dimensions of [4, 7, 2.75]
and noise source positioned at [1.5, 4, 2.08] (all dimen-
sions are in meters). PSD estimations are made by the
Welch method using 256 samples long frames, with 50%
overlap and with the Hann window. The sampling fre-
quency is Fs = 8000[Hz]. The speech source is placed
at [2.53, 4.03, 2.67] and microphone pair are placed at
[2, 3.5, 1.375] and [1.7, 3.5, 1.375]. Different reverberation
times and different SNR values are tested. The ATF-s
are simulated using the image method. Speech segments,
1.76[sec] long, are drawn from the TIMIT database and the
overall Monte-Carlo simulation is conducted over more than
5 minutes of speech. The noise source is the speech-like
noise drawn from the NOISEX-92 database. The signals are
filtered by the simulated ATF-s and summed at different
SNR values to construct the measurements z1(t) and z2(t).
For all the evaluated methods sub-sample TDOA calculation
(for 1

10
[sample] resolution) is performed using Shanon inter-

polation. The percentage of anomalies is calculated (where
anomaly is defined as divergence of more than 2 samples
from the true TDOA). Only non-anomalous estimates are
involved in calculating the root mean square error (RMSE).
The results are summarized in Table 1. As can be seen, at

Tr[sec] SNR[dB] S1 LD GS1 GCC
Anomaly percentage

0.10 5 1 0 0 16
0.50 5 2 5 5 65
0.25 5 0 0 0 20
0.25 0 4 3 3 98
0.25 −5 52 37 24 100

RMSE [sample]
0.10 5 0.06 0.06 0.06 0.07
0.50 5 0.15 0.15 0.14 0.13
0.25 5 0.09 0.10 0.10 0.09
0.25 0 0.12 0.12 0.13 0.07
0.25 −5 0.12 0.12 0.15 −

Table 1: Comparison of batch methods.

low reverberation conditions (Tr = 0.1[sec]) and high SNR
(5[dB]) all methods perform well (this might exclude the
GCC method that even at these mild conditions has 16%
anomaly). When we test severe (for a moderate size room)
reverberation of Tr = 0.5[sec], even in the high SNR level,
the GCC method, which lacks the reverberant model, rapidly
deteriorate in performance. On the other hand, the proposed
methods present low anomaly results. This is also the case
at mid-range reverberation Tr = 0.25[sec] and at lower SNR
conditions. Note that at low SNR levels, LD and GS1 out-
perform S1. Furthermore, at low SNR conditions the GCC
becomes useless, since it locks on the directional interfer-
ence TDOA instead of the speaker TDOA. Evaluation of the
RMSE (for the non anomalous experiments) reveals that the
TDOA is extracted with high accuracy.

3



Ht(θ̂(t− 1)) =

�
Φ̂z1zm(t, ω)− Ĝ∗m(t− 1, ω)Φ̂z1z1(t, ω), Φ̂zmz1(t, ω)− Ĥm(t− 1, ω)Φ̂z1z1(t, ω), 0

Φ̂z1z1(t, ω), 0, 1

�
(12)
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Figure 1: Speaker trajectory

6.2 Tracking Scenario

We proceed by discussing the tracking scenario in which the
speaker is moving. Room dimensions and the noise source
position are as in the static scenario. The speaker trajectory
is set to an helix with radius R = 1.5[m] around the refer-
ence microphone, at movement speed of 0.5[m/s] and for a
total movement time of T = 30[sec]. The speaker Cartesian
position as a function of time t ∈ [0, T ] is,

x(t) = 2 + R cos(2πft), y(t) = 3.5 + R sin(2πft)
z(t) = 1 + t

T

with f = 0.0529[Hz]. This trajectory is depicted in Fig. 1.
The TDOA extraction procedures are the same as in the
static scenario. However, for the proposed methods, we now
solve the LS problem recursively with a forgetting factor
smaller than one. Sampling every 3.75[cm] along the speaker
trajectory, the ATF-s between the speaker and the micro-
phones are simulated using the image method and used to
filter the speech. The mean SNR for the 30[sec] long signal
is set to 10[dB]. A forgetting factor of 0.824 is used in the the
RLS form of S1, LD and GS1 procedures, to allow tracking
of (a slowly changing) Hm(ω). TDOA estimation results,
with respect to the microphone pair placed at [2, 3.5, 1.375]
and [2.3, 3.5, 1.375] are presented in Fig. 2 for the GCC and
the recursive forms of LD and GS1. The recursive form of
S1 has comparable performance with the LD and GS1. As
can be seen from Fig. 2 the GCC method tends to lock on
the noise position (note, that the directional noise TDOA
is approximately 4[samples]). In contrast, most of the time
the proposed methods manage to track the changes in the
speaker TDOA. We note however that there are time in-
stances where wrong TDOA selection is made and that the
memory of the RLS based algorithms causes slight diver-
gence of the estimated track from the real trajectory. Never-
theless, the obtained performance is significantly superior.
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