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ABSTRACT 

Differentiation of a signal is required in many appli- 
cations in the field of signal processing. Good linear 
differentiators exist which can be used also in the noisy 

conditions if the noise is not impulsive. In this pa- 
per we consider noise corrupted discrete-time measure- 
ments whose time derivatives we estimate. We have ex- 

perimentally evaluated various nonlinear methods and 
according to our results any of them is superior to the 

others. In this paper we propose two methods whose 
performance has been satisfactory in our experiments 

for differentiating a signal simultaneously corrupted by 
Gaussian and impulsive type of noise. First of the 
methods is median prefiltering followed by linear FIR 
differentiator and the second method is based on robust 
regression. We also address the problem of second or- 
der differentiation. 

1. INTRODUCTION 

Differentiation is a method to approximate instanta- 

neous rate of change or slope of a signal. There are 
many important applications in the field of signal pro- 
cessing in which differentiators can be utilized. In 
biomedical engineering the slope of a signal can be 
used, e.g., to measure the rate of saturation or sec- 
ond derivative can give important information about 
the beginning or end of a particular phenomenon. For 
example differentiation has been used for obtaining the 
time derivative of left ventricular pressure in [l] and in 
[2] differentiation has been applied to ECG signal pro- 
cessing. 

When we are using digital techniques, we have to 

sample the analog signal by using some sampling pe- 
riod T. We assume here, in order not to unnecessar- 
ily complicate the calculations, that the sampling pe- 
riod is equal to one unit of time, i.e., T = 1. Because 
of sampling we have to construct a discrete-time ap- 
proximation of the derivative operator in order to be 
able to calculate the derivative. We have to remember 
now that the discrete-t,ime samples can be corrupted 

by noise and try to avoid the weakness of many algo- 
rithms designed for this purpose, i.e., the susceptibility 
to noise. 

2. LINEAR DIFFERENTIATORS 

One very coarse possibility to approximate the slope 

of a signal is the first-order difference, i.e., y(n) = 
z(n) - z(n - 1). This approximation assumes linear be- 

havior of the signal between the two consecutive sam- 
ples. The slope of a straight line between these two 
points is taken as the derivative estimate. For one 
thing, this method creates an error because it actually 
estimates the derivative at a point halfway between the 
two samples rather than at neither of the two sample 
points. However, the difference is very easy to calculate 
and gives nice results when the signal is not corrupted 

by noise, but this estimate is also extremely sensitive 
to noise and it has a tendency to amplify the noise so 

much that the noise totally corrupts the output of the 
differentiator. 

We mentioned above the biological and biomechani- 
cal signals as a possible area of applications. These sig- 

nals usually have low frequency components contami- 
nated by wide-band noise. This is the reason why many 
low-pass differentiation algorithms have been designed 
for differentiation of these signals. One such low-pass 
filter performing both smoothing and differentiation si- 
mult.aneously has been introduced in [3]. As in many 
other approaches, also in this one, the goal is quite dif- 
ferent from ours, since the inberest is very much in the 
simplicity of the algorithm which of course sets limits 

to the accuracy of the obtained numerical results. 

Because the signals are noisy in most of the real life 
signal processing applications there is a need for such a 

differentiator which can estimate the signal slope also 
under noisy condit,ions. Many such differentiators have 
been proposed, one of which is the FIR differentiator 
introduced in [4]. This differentiator has efficient recur- 
sive implementation and it is optimal in attenuation of 
white Gaussian noise. The impulse response character- 
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Figure 1: a) Noisy test signal and b) output of FIR differentiator with window length 255. 

izing the differentiator is the following 

h(n) = (2N + ,,“(2N + 2) 
, n =O ,..., 2N, 

where 2N + 1 is the length of the filter window. 
This differentiator works well when t.he type of noise 

is such that the deviations from the correct values are 
not very large. In conditions where impulsive type of 
noise is present the result of linear FIR differentiator 

deteriorates significantly. In Figure 1 a) Gaussian noise 
with deviation of 0.005 and some impulses are added 

to.the test signal. From Figure 1 b) it can clearly be 
seen that FIR differentiator attenuates Gaussian type 
of noise efficiently, but impulses create very disturb- 
ing large deviations to the output of the differentiator. 
This implies that there exists a need to use nonlinear 
methods in differentiators when the linear methods fail. 

3. LINEAR REGRESSION 

Assuming a sliding window of length 2N + 1, we wish 
to approximate the signal values in the window by a 
straight line y = uz + b. Signal values in the window 

are YI,YZ,..., yzN+l and occure at the time instants 

~l,xZr...rx2N+l. The slope a of the line y = ux + 
b is interpreted as the derivative of the signal at the 
middle point of the window. So we want to study the 
dependence of a random variable Y on variable X. For 
this purpose we can use the method of linear regression. 
In this approach the unknowns a and b are solved by’ 
using the principle of least squares, i.e., by minimizing 

L = E{Y - aX - b}‘. This square is minimized when 
the two partial derivatives $$ and g are set equal 
to zero and a and b can then be solved from the two 
obtained equations (cf. e.g. [5]). This way we obtain 

a = E{XYl- ~{W~W = cov(X,Y) 
E(X2) - E(X)2 var(X) (1) 

and 

b = E(Y) - aE{X}. (2) 

The line of regression of Y on X now obtains the 

form 

y = “y$g) (x - E(X)) + E(Y). 

Because we have now only 2N + 1 samples for calcu- 
lations, we have to approximate expected values, for 

example, E{XY} = & Cfrlt’ +iyi. 
As a measure of deviation of the signal values y; 

from the predict.ed counterparts 6; = UQ + b we can 
use the residual ti = yi - 6; or squared residual 2:. 
The residual describes how well at each sample point 
yi in the window the calculated straight line approx- 

imates this sample point. When the samples ?/i are 
noisy the squared residuals if obtain larger values and 
gross outliers can have very disturbing influence on the 
estimate. In Figure 2 is an example of a situation where 
there are two outliers, whose influence is so dominat- 
ing that the slope of the regression line (-. line) has 
a value a = -0.001186514 instead of the correct, value 
a = 0.000142857. So this method obviously needs to 



‘. 0.8 -----_ 0.8 I1 
- - -.- -.- - - ----_ I 

Figure 2: Set of 67 input samples (0) having two out- 
liers at x = 1 and x = 67. Straight lines are obtained 
by linear regression of all the samples (-. line) and by 

linear regression of 65 samples having minimum range 
(solid line). 

be improved in order to eliminate the influence of out- 
liers. We will do this improvement in the next section 
by rejecting the outliers from the calculation of the ex- 
pected value by a method proposed there as the second 
nonlinear method. 

4. NONLINEAR METHODS 

We experimented several nonlinear methods for dif- 
ferentiation. Most of our experiments gave good re- 
sults and we did not find a single method which would 
have clearly outperformed the others, but several of 
the methods gave equally good results. In this paper 

we propose two of those nonlinear methods which per- 
formed well also in conditions where t.here were large 
errors in the samples, as for example, when the type 
of noise was impulsive. The two possibilities we con- 

centrate on are nonlinear prefiltering followed by linear 
filtering and the use of nonlinear expected value esti- 
mation method. 

In nonlinear prefiltering we compared the perfor- 
mance of different nonlinear methods in order to find 

the best prefilter. We also investigated the possibility 
to use nonlinear postfilt.ering, but concluded that the 

results obtained by prefiltering were superior to those 
obtained by postfiltering. Selection of the prefilter de- 
pends of course on the type of noise we want to remove 
from the signal before applying the FIR differentiator. 
Because impulsive type of noise corrupted the result 
of FIR differenbiator quite severely, as we saw in the 

Figure 1 b), we explored several different nonlinear fil- 
ters which could remove the impulses, but would not 
distort the signal in other ways so that the FIR dif- 
ferentiator could still operate successfully. In most of 
the cases very good performance was obtained by us- 
ing a simple three point median filter. The result of 
this method applied to the signal in the Figure 1 a) 
is illustrated in Figure 3 a). There the noisy test sig- 
nal is first filtered with three point median and after 

that 255 point FIR differentiator is applied. As can 
be seen from this Figure the result is very good and 
essentially the same as obtained in [4] for same input 
signal without impulses and by using only FIR differ- 
entiator. Three point median is a fast operation and 
so it does not increase computational time of the dif- 
ferentiator very much. Median filtering can also have 

some drawbacks as described in [S] when the slope of 
the signal is large compared to noise level. In such a 
case the output, of the median filter is a noisy value 

causing problems for the FIR differentiator. Typically 
the differences between different filters were negligible, 
thus the simple median is a safe choice. 

As another good method we propose a nonlinear 
method for reducing the susceptibility to noise in the 
signal of linear regression described in the previous sec- 
tion. Thus, we are doing robust regression. In this 
differentiation method we estimate the expected value 

in (1) and (2) by using the idea behind the nonlin- 
ear WMMR filter [7]. In WMMR filter we select m 

of the windowed values with the smallest range and 
weight these samples. The range of a set of values 

{Yl,YZ,..*, ?&N+i} is defined to be max{ ]yi - yj 1, i # 
j, 1 5 i, j 5 21%’ + 1). So the selection of the minimum 
range finds the most condensed concentration of the 

values and rejects the outliers. 

Our method is a combination of linear regression 

and WMMR filtering. First we calculate an initial es- 
timate with linear regression as described in Section 3. 
After that we find the smallest range of the squared 
residuals 2: ez . .1 ii,+, to obtain the m subindexes 

defining the’samples y; and xi taken into consideration 
in the calculations. By using only these samples we 
calculate a final estimate by linear regression of only 
these m samples. So we have modified the WMMR 
filter in such a way that we filter samples correspond- 
ing to the subindexes obtained from the range calcula- 
tions. The weights are all set equal to $, i.e., we cal- 

culate the mean of the m selected samples. In Figure 
2 is shown the result of this approximation (solid line), 

when N = 67 and m = 65. The slope a = 0.000142838 
of this line is very close to the correct one differing 
only by the last two decimals. In Figure 3 b) is the sig- 

nal from Figure 1 a) differentiated by this method and 
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Figure 3: Output of a) FIR different.iator with window lengt,h 255 and three point median prefiltering and b) the 
differentiator based on linear regression and WMMR filter with window length 255 and m = 253. 

as can be seen the performance of the two proposed 
methods is quite similar. Naturally, there exists var- 

ious other techniques for robust regression, which are 
not considered in this paper. 

In Figure 4 is Figure 1 a) filtered similarly as in 

Figures 1 b), 3 a) and 3 b), but with window length 

51 instead of 255. When the window is shortened the 
impulses start to deteriorate t.he result of FIR differen- 
tiator even further. Also the removal of Gaussian noise 
is not as good as with longer window length, but very 
similar in all the three cases in Figure 4. It is impor- 
tant in order to ascertain this fact to notice different 
scaling of the y-axis in the subfigure a). 

5. SECOND ORDER DIFFERENTIATION 

Second order differentiation in noisy conditions is even 
more difficult than first order differentiation, since the 
amplification of the high frequency noise in linear dif- 

ferentiators grows with the order of the derivative to 
be estimated. In Figure 5 a) is the signal from Figure 
1 a) differentiated twice by FIR differentiator and we 
can observe that some of the noise spikes exceed the 
level of correct spikes, which should be in those places 
where the slope of the signal in Figure 1 a) changes. 

As can be seen from Figure 5, both of the nonlinear 
methods work quite well and the correct spikes can 
be easily detected by using some threshold value. In 
Figure 5 b) is the result of differentiation twice by FIR 
differentiator with median prefiltering and in Figure 5 

c) t,he method based on linear regression and WMMR 
filtering is applied two times to the initial noisy signal 
1 a). 

6. CONCLUSIONS 

Linear differentiators have a good performance in the 
presence of Gaussian type of noise, but have problems 
with impulses. For impulsive type of noise we inves- 
tigated in this paper the possibilities to use nonlinear 
differentiators. We found several good nonlinear meth- 
ods in our experiments and selected two of those giv- 
ing good results in the case of impulsive noise to illus- 
trate the capabilities of nonlinear methods. Based on 
our experiments we came to the conclusion that linear 
methods have good performance in all the other cases, 
except when the noise is such that the values deviate 

largely from the correct values. 
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Figure 4: Output of a) FIR differentiator with window length 51, b) FIR diffcrcntiator with window length 51 and 
three point median prefiltering and c) the differentiator based on linear regression and WMMR filter with window 

length 51 and m = 49. Notice different scales on y-axis. 

Figure 5: Second order derivatives of signal in Figure 1 a) obtained by a) FIR diffcrentiator with window length 
255, b) FIR differentiator with window length 255 and three point median prefiltering and c) the differentiator 
based on linear regression and WMMR filter. 
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