
MASSIVELY PARALLEL PROCESSING APPROACH TO FRACTAL IMAGE
COMPRESSION

Pa010 Palazzari

ENEA - HPCN Project - CRCasacciaVia Anguillarese, 301 - 00060 S.Maria di Galeria (Rome)
E-mail palazzari@casaccia.enea.it (Tel ++39-6-3048 3167)

Moreno Coli

University “La Sapienza”, Electronic Engineering Department,Via Eudossiana, 18 - 00184 Rome (Italy)
E-mail coli@die.ing.uniromal .it

ABSTRACT
In the last years Image Fractal Compression techniques

(IFS) have gained ever more interest because of their
capability to achieve high compression ratios while

maintaining very good quality for the reconstructed image.
The main drawback of such techniques is the very high

computing time needed to determine the compressed code.
In this paper, after a brief description of the IFS theory, we

discuss its parallel implementation by comparing the
different level of exploitable parallelism. In the paper we

show that Massively Parallel Processing on SIMD
machines is the best way to use all the large granularity

parallelism present in this problem. Finally, we give some
results achieved implementing IFS compression technique

on the MPP APE 1 OO/Quadrics machine.

1. INTRODUCTION

Image compression fractal techniques were introduced
by Bamsley [Bar 881. The image is represented through a
piecewise linear contractive function F and is reconstructed
by iteratively applying F to a randomly chosen starting
image: this technique is called Iterated Function System
(IFS). Compression is achieved exploiting as much as
possible the autosimilarities in the image. IFS has been
widely used (see, for example, [Bar 881, [Jaq 921, [Mon
92a,b]) because of the high compression rates achievable.

The main drawback of IFS is the very high computing
time needed in the compression phase (i.e. the solution of
the so-called IFS inverse problem): in fact, a NxN image is
partitioned into nxn blocks (called range blocks Ri) and, for
each block Ri, the corm-active function wi and the 2nx2n

blocks D, which minimize llRi - wi (D,)I(are searched. For

example, the determination of the IFS code for a 5 12x5 12
image with 8x8 range blocks requires about 325x10’
floating point operations(flops): such a very huge number
of flops clearly explains the complexity of the exact
solution of the IFS inverse problem.

In order to reduce the amount of computations required,
some sub-optimal techniques were proposed. In [Mon 92a]

and [Hur 931, for example, the search is not performed over
the whole space (the domain pool, DP) but in a small subset
of DP (determined through a neighbourhood basis). An
alternative way to reduce DP is classification [Jaq 931 [Jac
921: in such a case dimensions of DP are reduced by
introducing in it only elements belonging to a certain class.
A completely different approach to speedup the coding
phase is the Nearest-neighbour search [Sau 96a], [Kom 951,
based on the interpretation of the coding nxn sub-images as
vectors of a nxn Euclidean space and on a logarithmic
searching procedure defined on it; in such a case we cannot
take into account the effect of quantization on the
coefficient parameters. Speedup procedures can also use the
fast convolution method suggested in [Sau 96b].

In this paper we show that massively parallel processing
is a feasible and practical way to afford the exact solution
of the IFS inverse problem; some experimental results,
derived from the implementation of the IFS algorithm on
the SIMD Quadrics machine (512 processors, peak
computational power 25.6 Gflops) are given.

2. IFS : THEORETICAL BASES

A M x N digital image with L grey levels is represented
through the function

z = O(x,y), xc[O,N-11, y~[0,M-II, z~[0,L-Il.
Image domain is defined as R=[O,N-l]x[O,M-I] and can

be partitioned into several subdomains Ri. We define the
space of the digital images as the space Y of all the

functions <p; a metric function d($,c) measures the distance

between the images $,~EY; (Y,d) is a complete metric
space.

A contractive transformation on a complete metric
space (Y,d) is defined as a function F:Y + Y such as

d(F(Q),F(<)) I s d($,c) for each $,I!,EY, being OIs<l.
The following two theorems subsist [Bar 881:

contractive function theorem: a contractive function F
defined on a complete metric space (Y,d) has one, and only

one, fixed point R such that F(R)=R. If we consider the

sequence (co& 1 ,...,<k), being &=F(ci- I), it results that

lim & = R for each kO~Y.
k-m

Furthermore, if a constant CER exists such that ~(I#,<)<C

for each $,EE Y, it results that d(cn,Q) I s”C.

collage theorem: for a given contractive function F defined
on a complete metric space (Y,d), the distance between the

fixed point R and an image KEY is limited by the following

d(Q,@ I (1 -s)- 1d(F((),5).

Contractive functions theorem ensures the existence and

the unicity of an attractor R for the contractive function F.

The image S2 can be obtained through the iterated

application of F to any starting image JOEY; the sequence

(~0,51,...,~k) generated by the iterated application of F is

an IFS (Iterated Function System) which converges to R.
Collage theorem is useful when we want to solve the

inverse problem, i.e. when we want to find the contractive

function F which has a given image 5 as attractor. In fact,

by testing d(F(c),c), we have a measure of the distance

between the image 5 and the actual attractor of F. 5 is an

attractor of F only if F(~)=~.
As F is a contractive function (with ~1) it can result

F(&k only if F is the union of k contractive functions fi

(i=1,2 ,..., k), that is if F(c) = fl (5) u f2 (c)u.. .ufk (5) .

Each f, has contractivity si; contractivity of F is given by

s=max(s,). Usually ((5) is a local function, i.e. f, is applied

to a (nxn) subdomain ci =R, x[O,L-I]. fi(&) is the
composition of two functions and is defined as it follows :

fi({i)=Wi(A({i)), being

- A(gi) a function which maps, through an averaging

operation, a (2nx2n) subdomain 5, into a (nxn) subdomain

- w;‘) = u w(x, y, z = w, y)) =
(X.Yk&

&$; $21]+[;]

The contractive function Wi can be thought as the
composition of two different functions: a spatial affine

transformation ([;I]=[:: i:][;]+[“f:] and a linear

luminance transformation (z’= a,z+fl,) (ai<l). As A is a

fixed function, the coding of an image is given by the
coefficients of the Wi functions.

3. IFS IMPLEMENTATION AND COMPLEXITY
EVALUATION

On the base of the theory explained before, solution of the
inverse IFS problem is described through the following
algorithm:

1. partition the image into blocks of size nxn; these
blocks are called Range Blocks (RB);

2. individuate the set containing all the possible 2nx2n

blocks defined over the image 5 (or a subset of it if a
sub-optimal solution is acceptable); this set is called
Domain Pool (DP) and the blocks are called Domain
Blocks (DB)

3. for each RB, extract from DP a DB; reduce DB to a
nxn block through an averaging operation, then apply
to it one of the 8 isometric transformations (identity,
reflection about x and y axis, about first and second
diagonals, +90”,+ 180”,+270” rotations around the
center) and transform the so obtained block through the

luminance transformation; the a and B coefficients for
the transformation are computed solving the linear
system obtained by setting to zero the derivative with

respect to a and B of the rms error, i.e.

which give

it(RB,)-aA$(DBv)

P = i='i='
;=I j=l

rl*
(2)

4. for all the possible pairs of RBs and DBs, evaluate the
rms error defined as

and, for each RB, save the coordinates of the DB, the

isometric transformation and the a and B coefficients
which minimise d,,.

As step 4 of previous algorithm must be repeated for all
the RBs and, for each RB, for all the DBs, in the case of a
NxN digital image it must be repeated a number of times

N step =gN
0

n *(N-2n)”

2

being 8 the number of isometric transformations, and

(N - 2n)* the number, respectively, of RBs and DBs.

By inspecting expressions (1) and (2), we see that only

the term tk(RB,DB,) in (1) must be computed; in fact,
i=l i=l

n n
all the other summations ccXii can be pre-computed in

i=l i=l

the initialization phase (i.e. outside the critical loop). If we
neglect initialization phase, computation of (1) requires

2n2 +5 floating point operations (flops) and (2) requires 3
flops; furthermore, on the base of step 4, for each pair
(DB,RB) we have to compute d,, and such a computation

involves 512~ flops. Consequently, IFS algorithm requires a
number of flops given by

(~-2n)(7n*+8) (4)

Even if Njlops could be diminished either by adopting
some more auxiliary storage for pre-computed data or by
lowering dimensions of DP, Nflops remains still too large
to be afforded with conventional computers without
occurring in very long compressing times or in too noisy
reconstructed images.

On the base of previous reasoning, Massively Parallel
Processing (MPP) seems to be a reasonable answer to the
IFS coding problem, allowing the achievement of both fast
compression times and high quality reconstructed images.

4. PARALLELIZATION STRATEGIES

,Usually, when we want to exploit the parallelism
present in a problem that we are solving, we can individuate
several types of parallelism at different levels of
granularity, being the granularity a (machine dependent)
measure given by the ratio between the computing and the
communication times involved in the parallel algorithm; in
the IFS coding procedure, for example, we can individuate
at least 4 level of parallelism:
l- Hardware Level Parallelism (HWLP): this kind of

parallelism is present in almost all the applications and
is incorporated in all the microprocessors constituting
the computing devices (pipelined RISC processors,
vector processors, superscalar CISC processors, VLIW
processors); we do not discuss further HWLP because
it is a feature of the computer and does not affect
programming style and higher level parallelization
strategies (usually optimization concerning HWLP are

demanded to the compiler);
2- Low Level Parallelism (LLP): if we look at expressions

(I) and (3), we see that we can distribute RB, and DBY
among several processors (not more than n
processors); if we have pxp processors (p I n),

nxn values are assigned to each processor and we
P P

can compute the first term of expression (1) with

n,n multiplication and summation steps plus
P P

log,(pxp) communication and summation steps (tree

summation scheme); by assuming multiplication time
equal to summation time equal to t,, and
communication time equal to t-, we have that the
global time to compute the first term of expression (1)
is given by

T (1)P = 2
0

; *L? + L + Lxn)log*(Pxp) ;

on a similar single processor, the time to compute the
same expression would be

T (1)s = 2n24?xe ;

clearly LLP is useful when T(,,,<T(,,,; the greater is tcl,
with respect to t,, the bigger is the speedup
achievable; for example, in the case of n=p, we
obtained a Speedup

s-k- 2n2Le

Tl)P %xe + kc + LmJ~og2(n) ’

it is clear that the increasing of the granularity (i.e. of
t- with respect of t,,) makes S to become smaller.
Similar considerations could be derived for the
parallelization of expression (3).

3- Medium Level Parallelism (MLP): in such a case we
can partition DP among p processors, performing in
each processor, in a sequential way, the computation of
expressions (l), (2) and (3) between each RB,j and the
DBs belonging to the subset of DP assigned to the
processors; after this phase, which is p times faster than
the sequential computation, we need a communication
phase to determine the DB which gives the less rms

error; again, this communication phase requires log2 p

comparisons and communication steps. If we indicate
we Ts the sequential time to find in DP the DB which
minimises the rms error, we can derive for the speedup
S the following expression:

s=
Ts

E + (t,, + &ll)log* P

,

P
also in this case we see that S diminishes when the
granularity of the process increases.

4- High Level Parallelism (HLP): in such a case the
image is partitioned among the p processors,

distributing equally the RBs through all the processors;
the whole DP is contained in (or accessible from) each
processor. The algorithm in the HLP case is the
following:

do in parallel in each processor p,
do for each RB assigned to p,

find the DB and the affine contractive
transformation which minimise the given
distorsion measure (step 3 and 4 of the IFS
algorithm)

enddo for each
enddo in parallel

In such a case it is easy to verify that no
communications are required (we have the so called
embarrassing parallelism) and that the Speedup S is
exactly equal to the number of processors p.

From previous reasoning, we can say that HLP is the
best approach for the parallel IFS coding; in fact MLP and
LLP present some communication overheads that give rise
to poorer performances. In general we can say that HLP is
the best approach to parallelism; MLP and LLP are taken
into account only when the HLP is not sufficient to use all
the processors available.

The adoption of HLP in the IFS case, for a NxN image
partitioned into nxn RBs, allows us to keep busy

0
!!

2

processors; so, for the typical case N=512 and n=8,
n

we can effectively use a number of processors as large as
4096. This very large number of processors makes the IFS
coding problem a good candidate for efficient utilisation of
Massively Parallel Processors.

5. CHOSING THE PARALLEL ARCHITECTURE

In the last years a lot of MPP architecture were
proposed (CM-5, Cray T3D(E), IBM SP/2, Meiko CS-2,
APE1 OO/Quadrics); all these machines provide
configurations with hundreds or thousands of processors
and support HWLP.

Following the classical Flynn classification, we can
divide parallel machine into two general classes: SIMD and
MIMD machines. The first ones have only one control
processor which broadcast the same instruction to all the
Processing Elements, while the second ones are built with
general purpose processors connected through fast
interconnection networks. Clearly MIMD machines are
more general (and more costly) than SIMD machines,
because their HW supports the contemporaneous and
asynchronous execution of different processes; in particular
each processor in MIMD machines has HW to manage the
control flow of the processes, the caching policy and
asynchronous communication.

In the case of IFS coding, the analysis of the algorithm
at the HLP shows that:
- it is completely synchronous;
- all the processors execute the same instructions on

different data (RBs);
- no interprocessor communication is required;
- no caching policy is needed.

Previous points make clear that MIMD machines are
over-dimensioned for such a coding problem; in particular
they have HW resources that remain almost unutilised
while all the HW (and consequently all the computational
power) of SIMD machines is fully exploited. As a
consequence, we chose to implement IFS coding on the
APElOO/Quadrics SIMD machine [Bar 931.

The APElOO/Quadrics machine was originally designed
as a QCD machine and, successively, transformed into a
more flexible machine by substantially improving its I/O
capabilities. It is constituted by VLIW pipelined processors
which have a peak performance of 50 Mflops. The machine
is connected according to a 3-dimensional toroidal topology
and, in its largest configuration, uses 2048 processors
giving a peak power of 100 Gflops. The machine is hosted
by a SparQO and I/O is performed through an HiPPI
channel (High Performance Periferal Interface) which
offers a bandwidth of 20 MBytelsec. Following the idea
that MIMD machines are not well suited for MPP, being
usually HLP better implemented on SIMD machines, the
APElOO/Quadrics will be updated by one year with the
APEmille machine, a SIMD MPP with peak power of 1
Tflops.

6. RESULTS

As discussed in section 4, we have implemented the IFS
coding procedure at the HLP on the SIMD massively
parallel processing APElOO/Quadrics machine. We used
the configuration with 512 floating point processors,
offering a peak power of 25.6 Gflops.

As test case we compressed the 5 12x512 image Lenna,
using 8x8 range blocks. The compression time, with DP
step set to 2 (see fig. l), was 11.2 seconds: the sustained
computational power was 7.3 Gflops, i.e. we achieved a
parallel efficiency in the machine utilisation E=0.28. In this
case we had a compression ratio CR=18.3 and SNR=30.3
dB. When we diminished the size of DP, by using step=8 to
build it, we obtained the compressed image in 0.7 seconds;
in this case CR=2 1.3 and SNR=30 dB (fig. 2).

In both the examples we used 3 bits to represent a and 8

bits to represent B.
We also tested the method on a 128 processor machine;

in such a case we obtained compression times exactly 4
times greater than the ones in previous examples; this fact
demonstrates the very good scalability of the algorithm.

7. CONCLUSIONS

After recalling IFS theory and its advantages (high
compression ratios, very good quality) and drawbacks (very
high computing times), we gave a quantitative measure of
the complexity of the IFS coding procedure.

Because of this very high computing complexity, we
suggested to use already consolidated parallel processing
architectures to obtain fast compressing times without loss
in the quality of the reconstructed image.

We analysed the parallelism inherent to this problem at
4 different levels of granularity and we showed that we
have enough High Level Parallelism (HLP) to keep
efficiently busy a massively parallel processor.

Finally, we have briefly discussed the target architecture
on which implement the algorithm, arguing that SIMD
machines are better suited for such kind of problems than
MIMD machines.

The results we obtained from an actual implementation
of the method on the APElOO/Quadrics SIMD
supercomputer demonstrate that MPP is an affordable way
to have fast compressing times avoiding quality degradation
introduced by the usual fast fractal compressing techniques.

REFERENCES

[Bar 881 Barns1ey.M.F. : ‘Fractals everywhere’. New
York : Academic Press, 1988.
[Bar 931 Bartoloni,A. et al: ‘A hardware implementation of
theAPE architecture’. International Journal of Modem
Physics, C4, 1993.
[Jaq 921 Jaquin,A.E. : ‘Image coding based on fractal
theory of iterated contractive image transformations’. IEEE
Trans. On Image Processing, vol. 1, n. 1, Jan. 1992.
[Jaq 931 Jaquin,A.E. : ‘ Fractal Image coding: a review’.
Proc. Of the IEEE, vol. 81, n. 10, 1993.
[Mon 92a] Monro, D.M., Dudbridge,F. : ‘Fractal block
coding of images’. Electronic Letters, vol. 28, n. 11, May
1992.
[Mon 92b] Monro, D.M., Dudbridge,F. : ‘Fractal
approximation of image blocks’. Proc. ICASSP 3, 1992.
[Hur 931 Hurtgen,B., Stiller,C. : ‘Fast hierarchical
codebook search for fractal coding of still images’.
EOS/SPIE Visual Communication and PACS for Medical
Applications 93, 1993.
[Jac 921 Jacobs,E.W., Fisher,Y., Boss,R.D. : ‘Image
compression: a study of the iterated transform method’.
Signal Processing, 29, 1992.
[Sau 96a] Saupe,D. : ‘Fractal image compression via
nearest neighbor search’. In Proc. NATO AS1 Fractal
Image Encoding and Analysis. Springer-verlag, 1996
[Sau 96b] Saupe,D. Hartenstein,H. : ‘Lossless acceleration
of fractal image compression by fast convolution’. Proc. Of
the IEEE International Conference on Image Processing
(ICIP 96), 1996.
[Kom 951 Kominek,J. : ‘Algorithm for fast fractal image
compression’. Proc. Of SPIE, vol. 2419, 1995.

