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ABSTRACT 
In the last years Image Fractal Compression techniques 

(IFS) have gained ever more interest because of their 
capability to achieve high compression ratios while 

maintaining very good quality for the reconstructed image. 
The main drawback of such techniques is the very high 

computing time needed to determine the compressed code. 
In this paper, after a brief description of the IFS theory, we 

discuss its parallel implementation by comparing the 
different level of exploitable parallelism. In the paper we 

show that Massively Parallel Processing on SIMD 
machines is the best way to use all the large granularity 

parallelism present in this problem. Finally, we give some 
results achieved implementing IFS compression technique 

on the MPP APE 1 OO/Quadrics machine. 

1. INTRODUCTION 

Image compression fractal techniques were introduced 
by Bamsley [Bar 881. The image is represented through a 
piecewise linear contractive function F and is reconstructed 
by iteratively applying F to a randomly chosen starting 
image: this technique is called Iterated Function System 
(IFS). Compression is achieved exploiting as much as 
possible the autosimilarities in the image. IFS has been 
widely used (see, for example, [Bar 881, [Jaq 921, [Mon 
92a,b]) because of the high compression rates achievable. 

The main drawback of IFS is the very high computing 
time needed in the compression phase (i.e. the solution of 
the so-called IFS inverse problem): in fact, a NxN image is 
partitioned into nxn blocks (called range blocks Ri) and, for 
each block Ri, the corm-active function wi and the 2nx2n 

blocks D, which minimize llRi - wi (D, )I( are searched. For 

example, the determination of the IFS code for a 5 12x5 12 
image with 8x8 range blocks requires about 325x10’ 
floating point operations(flops): such a very huge number 
of flops clearly explains the complexity of the exact 
solution of the IFS inverse problem. 

In order to reduce the amount of computations required, 
some sub-optimal techniques were proposed. In [Mon 92a] 

and [Hur 931, for example, the search is not performed over 
the whole space (the domain pool, DP) but in a small subset 
of DP (determined through a neighbourhood basis). An 
alternative way to reduce DP is classification [Jaq 931 [Jac 
921: in such a case dimensions of DP are reduced by 
introducing in it only elements belonging to a certain class. 
A completely different approach to speedup the coding 
phase is the Nearest-neighbour search [Sau 96a], [Kom 951, 
based on the interpretation of the coding nxn sub-images as 
vectors of a nxn Euclidean space and on a logarithmic 
searching procedure defined on it; in such a case we cannot 
take into account the effect of quantization on the 
coefficient parameters. Speedup procedures can also use the 
fast convolution method suggested in [Sau 96b]. 

In this paper we show that massively parallel processing 
is a feasible and practical way to afford the exact solution 
of the IFS inverse problem; some experimental results, 
derived from the implementation of the IFS algorithm on 
the SIMD Quadrics machine (512 processors, peak 
computational power 25.6 Gflops) are given. 

2. IFS : THEORETICAL BASES 

A M x N digital image with L grey levels is represented 
through the function 

z = O(x,y), xc[O,N-11, y~[0,M-II, z~[0,L-Il. 
Image domain is defined as R=[O,N-l]x[O,M-I] and can 

be partitioned into several subdomains Ri. We define the 
space of the digital images as the space Y of all the 

functions <p; a metric function d($,c) measures the distance 

between the images $,~EY; (Y,d) is a complete metric 
space. 

A contractive transformation on a complete metric 
space (Y,d) is defined as a function F:Y + Y such as 

d(F(Q),F(<)) I s d($,c) for each $,I!,EY, being OIs<l. 
The following two theorems subsist [Bar 881: 

contractive function theorem: a contractive function F 
defined on a complete metric space (Y,d) has one, and only 

one, fixed point R such that F(R)=R. If we consider the 



sequence (co& 1 ,...,<k), being &=F(ci- I), it results that 

lim & = R for each kO~Y. 
k-m 

Furthermore, if a constant CER exists such that ~(I#,<)<C 

for each $,EE Y, it results that d(cn,Q) I s”C. 

collage theorem: for a given contractive function F defined 
on a complete metric space (Y,d), the distance between the 

fixed point R and an image KEY is limited by the following 

d(Q,@ I ( 1 -s)- 1d(F((),5). 

Contractive functions theorem ensures the existence and 

the unicity of an attractor R for the contractive function F. 

The image S2 can be obtained through the iterated 

application of F to any starting image JOEY; the sequence 

(~0,51,...,~k) generated by the iterated application of F is 

an IFS (Iterated Function System) which converges to R. 
Collage theorem is useful when we want to solve the 

inverse problem, i.e. when we want to find the contractive 

function F which has a given image 5 as attractor. In fact, 

by testing d(F(c),c), we have a measure of the distance 

between the image 5 and the actual attractor of F. 5 is an 

attractor of F only if F(~)=~. 
As F is a contractive function (with ~1) it can result 

F(&k only if F is the union of k contractive functions fi 

(i=1,2 ,..., k), that is if F(c) = fl (5) u f2 (c)u.. .ufk (5) . 

Each f, has contractivity si; contractivity of F is given by 

s=max(s,). Usually ((5) is a local function, i.e. f, is applied 

to a (nxn) subdomain ci =R, x[O,L-I]. fi(&) is the 
composition of two functions and is defined as it follows : 

fi({i)=Wi(A({i)), being 

- A(gi) a function which maps, through an averaging 

operation, a (2nx2n) subdomain 5, into a (nxn) subdomain 

- w;‘) = u w(x, y, z = w, y)) = 
(X.Yk& 

&$ ; $21]+[;] 

The contractive function Wi can be thought as the 
composition of two different functions: a spatial affine 

transformation ([;I]=[:: i:][;]+[“f:] and a linear 

luminance transformation (z’= a,z+fl,) (ai<l). As A is a 

fixed function, the coding of an image is given by the 
coefficients of the Wi functions. 

3. IFS IMPLEMENTATION AND COMPLEXITY 
EVALUATION 

On the base of the theory explained before, solution of the 
inverse IFS problem is described through the following 
algorithm: 

1. partition the image into blocks of size nxn; these 
blocks are called Range Blocks (RB); 

2. individuate the set containing all the possible 2nx2n 

blocks defined over the image 5 (or a subset of it if a 
sub-optimal solution is acceptable); this set is called 
Domain Pool (DP) and the blocks are called Domain 
Blocks (DB) 

3. for each RB, extract from DP a DB; reduce DB to a 
nxn block through an averaging operation, then apply 
to it one of the 8 isometric transformations (identity, 
reflection about x and y axis, about first and second 
diagonals, +90”,+ 180”,+270” rotations around the 
center) and transform the so obtained block through the 

luminance transformation; the a and B coefficients for 
the transformation are computed solving the linear 
system obtained by setting to zero the derivative with 

respect to a and B of the rms error, i.e. 

which give 

it(RB,)-aA$(DBv) 

P = i='i=' 
;=I j=l 

rl* 
(2) 

4. for all the possible pairs of RBs and DBs, evaluate the 
rms error defined as 

and, for each RB, save the coordinates of the DB, the 

isometric transformation and the a and B coefficients 
which minimise d,,. 

As step 4 of previous algorithm must be repeated for all 
the RBs and, for each RB, for all the DBs, in the case of a 
NxN digital image it must be repeated a number of times 



N step =gN 
0 

n *(N-2n)” 

2 

being 8 the number of isometric transformations, and 

(N - 2n)* the number, respectively, of RBs and DBs. 

By inspecting expressions (1) and (2), we see that only 

the term tk(RB,DB,) in (1) must be computed; in fact, 
i=l i=l 

n n 
all the other summations ccXii can be pre-computed in 

i=l i=l 

the initialization phase (i.e. outside the critical loop). If we 
neglect initialization phase, computation of (1) requires 

2n2 +5 floating point operations (flops) and (2) requires 3 
flops; furthermore, on the base of step 4, for each pair 
(DB,RB) we have to compute d,, and such a computation 

involves 512~ flops. Consequently, IFS algorithm requires a 
number of flops given by 

*(~-2n)*(7n*+8) (4) 

Even if Njlops could be diminished either by adopting 
some more auxiliary storage for pre-computed data or by 
lowering dimensions of DP, Nflops remains still too large 
to be afforded with conventional computers without 
occurring in very long compressing times or in too noisy 
reconstructed images. 

On the base of previous reasoning, Massively Parallel 
Processing (MPP) seems to be a reasonable answer to the 
IFS coding problem, allowing the achievement of both fast 
compression times and high quality reconstructed images. 

4. PARALLELIZATION STRATEGIES 

,Usually, when we want to exploit the parallelism 
present in a problem that we are solving, we can individuate 
several types of parallelism at different levels of 
granularity, being the granularity a (machine dependent) 
measure given by the ratio between the computing and the 
communication times involved in the parallel algorithm; in 
the IFS coding procedure, for example, we can individuate 
at least 4 level of parallelism: 
l- Hardware Level Parallelism (HWLP): this kind of 

parallelism is present in almost all the applications and 
is incorporated in all the microprocessors constituting 
the computing devices (pipelined RISC processors, 
vector processors, superscalar CISC processors, VLIW 
processors); we do not discuss further HWLP because 
it is a feature of the computer and does not affect 
programming style and higher level parallelization 
strategies (usually optimization concerning HWLP are 

demanded to the compiler); 
2- Low Level Parallelism (LLP): if we look at expressions 

(I) and (3), we see that we can distribute RB, and DBY 
among several processors (not more than n 
processors); if we have pxp processors ( p I n), 

nxn values are assigned to each processor and we 
P P 

can compute the first term of expression (1) with 

n,n multiplication and summation steps plus 
P P 

log,( pxp) communication and summation steps (tree 

summation scheme); by assuming multiplication time 
equal to summation time equal to t,, and 
communication time equal to t-, we have that the 
global time to compute the first term of expression (1) 
is given by 

T (1)P = 2 
0 

; *L? + L + Lxn)log*(Pxp) ; 

on a similar single processor, the time to compute the 
same expression would be 

T (1)s = 2n24?xe ; 

clearly LLP is useful when T(,,,<T(,,,; the greater is tcl, 
with respect to t,, the bigger is the speedup 
achievable; for example, in the case of n=p, we 
obtained a Speedup 

s-k- 2n2Le 

Tl)P %xe + kc + LmJ~og2(n) ’ 

it is clear that the increasing of the granularity (i.e. of 
t- with respect of t,,) makes S to become smaller. 
Similar considerations could be derived for the 
parallelization of expression (3). 

3- Medium Level Parallelism (MLP): in such a case we 
can partition DP among p processors, performing in 
each processor, in a sequential way, the computation of 
expressions (l), (2) and (3) between each RB,j and the 
DBs belonging to the subset of DP assigned to the 
processors; after this phase, which is p times faster than 
the sequential computation, we need a communication 
phase to determine the DB which gives the less rms 

error; again, this communication phase requires log2 p 

comparisons and communication steps. If we indicate 
we Ts the sequential time to find in DP the DB which 
minimises the rms error, we can derive for the speedup 
S the following expression: 

s= 
Ts 

E + (t,, + &ll)log* P 

, 

P 
also in this case we see that S diminishes when the 
granularity of the process increases. 

4- High Level Parallelism (HLP): in such a case the 
image is partitioned among the p processors, 



distributing equally the RBs through all the processors; 
the whole DP is contained in (or accessible from) each 
processor. The algorithm in the HLP case is the 
following: 

do in parallel in each processor p, 
do for each RB assigned to p, 

find the DB and the affine contractive 
transformation which minimise the given 
distorsion measure (step 3 and 4 of the IFS 
algorithm) 

enddo for each 
enddo in parallel 

In such a case it is easy to verify that no 
communications are required (we have the so called 
embarrassing parallelism) and that the Speedup S is 
exactly equal to the number of processors p. 

From previous reasoning, we can say that HLP is the 
best approach for the parallel IFS coding; in fact MLP and 
LLP present some communication overheads that give rise 
to poorer performances. In general we can say that HLP is 
the best approach to parallelism; MLP and LLP are taken 
into account only when the HLP is not sufficient to use all 
the processors available. 

The adoption of HLP in the IFS case, for a NxN image 
partitioned into nxn RBs, allows us to keep busy 

0 
!! 

2 

processors; so, for the typical case N=512 and n=8, 
n 

we can effectively use a number of processors as large as 
4096. This very large number of processors makes the IFS 
coding problem a good candidate for efficient utilisation of 
Massively Parallel Processors. 

5. CHOSING THE PARALLEL ARCHITECTURE 

In the last years a lot of MPP architecture were 
proposed (CM-5, Cray T3D(E), IBM SP/2, Meiko CS-2, 
APE1 OO/Quadrics); all these machines provide 
configurations with hundreds or thousands of processors 
and support HWLP. 

Following the classical Flynn classification, we can 
divide parallel machine into two general classes: SIMD and 
MIMD machines. The first ones have only one control 
processor which broadcast the same instruction to all the 
Processing Elements, while the second ones are built with 
general purpose processors connected through fast 
interconnection networks. Clearly MIMD machines are 
more general (and more costly) than SIMD machines, 
because their HW supports the contemporaneous and 
asynchronous execution of different processes; in particular 
each processor in MIMD machines has HW to manage the 
control flow of the processes, the caching policy and 
asynchronous communication. 

In the case of IFS coding, the analysis of the algorithm 
at the HLP shows that: 
- it is completely synchronous; 
- all the processors execute the same instructions on 

different data (RBs); 
- no interprocessor communication is required; 
- no caching policy is needed. 

Previous points make clear that MIMD machines are 
over-dimensioned for such a coding problem; in particular 
they have HW resources that remain almost unutilised 
while all the HW (and consequently all the computational 
power) of SIMD machines is fully exploited. As a 
consequence, we chose to implement IFS coding on the 
APElOO/Quadrics SIMD machine [Bar 931. 

The APElOO/Quadrics machine was originally designed 
as a QCD machine and, successively, transformed into a 
more flexible machine by substantially improving its I/O 
capabilities. It is constituted by VLIW pipelined processors 
which have a peak performance of 50 Mflops. The machine 
is connected according to a 3-dimensional toroidal topology 
and, in its largest configuration, uses 2048 processors 
giving a peak power of 100 Gflops. The machine is hosted 
by a SparQO and I/O is performed through an HiPPI 
channel (High Performance Periferal Interface) which 
offers a bandwidth of 20 MBytelsec. Following the idea 
that MIMD machines are not well suited for MPP, being 
usually HLP better implemented on SIMD machines, the 
APElOO/Quadrics will be updated by one year with the 
APEmille machine, a SIMD MPP with peak power of 1 
Tflops. 

6. RESULTS 

As discussed in section 4, we have implemented the IFS 
coding procedure at the HLP on the SIMD massively 
parallel processing APElOO/Quadrics machine. We used 
the configuration with 512 floating point processors, 
offering a peak power of 25.6 Gflops. 

As test case we compressed the 5 12x512 image Lenna, 
using 8x8 range blocks. The compression time, with DP 
step set to 2 (see fig. l), was 11.2 seconds: the sustained 
computational power was 7.3 Gflops, i.e. we achieved a 
parallel efficiency in the machine utilisation E=0.28. In this 
case we had a compression ratio CR=18.3 and SNR=30.3 
dB. When we diminished the size of DP, by using step=8 to 
build it, we obtained the compressed image in 0.7 seconds; 
in this case CR=2 1.3 and SNR=30 dB ( fig. 2). 

In both the examples we used 3 bits to represent a and 8 

bits to represent B. 
We also tested the method on a 128 processor machine; 

in such a case we obtained compression times exactly 4 
times greater than the ones in previous examples; this fact 
demonstrates the very good scalability of the algorithm. 



7. CONCLUSIONS 

After recalling IFS theory and its advantages (high 
compression ratios, very good quality) and drawbacks (very 
high computing times), we gave a quantitative measure of 
the complexity of the IFS coding procedure. 

Because of this very high computing complexity, we 
suggested to use already consolidated parallel processing 
architectures to obtain fast compressing times without loss 
in the quality of the reconstructed image. 

We analysed the parallelism inherent to this problem at 
4 different levels of granularity and we showed that we 
have enough High Level Parallelism (HLP) to keep 
efficiently busy a massively parallel processor. 

Finally, we have briefly discussed the target architecture 
on which implement the algorithm, arguing that SIMD 
machines are better suited for such kind of problems than 
MIMD machines. 

The results we obtained from an actual implementation 
of the method on the APElOO/Quadrics SIMD 
supercomputer demonstrate that MPP is an affordable way 
to have fast compressing times avoiding quality degradation 
introduced by the usual fast fractal compressing techniques. 
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