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1. ABSTRACT 

Despite considerable appeal in the statistics literature, the 
Huber estimate is little used in engineering. We believe this 
is due primarily to two factors: difficulty computing the es- 

timate and the need for a corresponding scale estimate. We 
present a variation of the Huber estimate which we call the 
“trimmed-Huber” estimate that addresses both of these con- 

cerns. A fixed fraction of the data points will be “trimmed 
off”, but unlike the trimmed mean, these data points do not 
have to by symmetrically trimmed. 

2. INTRODUCTION 

The use of robust statistics to combat non-Gaussian (gen- 

erally heavy tailed) noises has a long history, dating back 
thousands of years. Starting in earnest in the 1960’s and 
70’s, considerable scientific study of robust estimators was 
completed. Two excellent volumes were written summariz- 
ing this work, one by Huber [5] and one by Hampel[3]. 

Briefly, three classes of robust estimators were consid- 
ered: L, M, and R estimates. The “L” estimates are those 
derived from linear combinations of order statistics. “M” 
estimates are generalizations of maximum likelihood esti- 
mates in that they minimize a loss function. Finally, the 
“R” estimates are based on rank tests. Since R-estimates 
are not germane to the rest of this paper, they will be ig- 
nored hereon. 

The engineering community is interested in robust esti- 
mates for two reasons: Firstly, in many applications, heavy 
tailed noise is present. For example, transmission errors 
often introduce “salt and pepper” noise-black and white 
dots-into images. Generally speaking, salt and pepper noise 
is easily filtered out with simple nonlinear filters, e.g., [4]. 

The first estimators considered in the engineering liter- 
ature to eliminate these noises were the median filters [2]. 
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The median can output a finite value as long as less than half 
the data points are finite. 

Over the years numerous generalizations of the median 
have been proposed. These include recursive medians, lin- 
ear combinations of order statistics and its simpler variant, 

the trimmed mean, LI-filters, LUM filters, permutation fil- 
ters, morphological filters, stack filters, and others. 

Secondly, the engineering community has considered 
robust statistics because the signals in many applications 
are non-Gaussian in nature. Nowhere is this more appar- 

ent than in image processing. Edges and other features are 
not well modeled by Gaussian statistics. Here, again, the 
median filter offers advantages. It can pass a simple edge 

without distortion. 

From the statistics point of view, all or almost all these 
filters are L-estimates (or are based on L-estimates). Statis- 
ticians are more likely to consider M-estimates for their ro- 
bust procedures. One reason for this is that M-estimates 
generalize more easily to multivariate situations. A likely 
second reason is that statisticians are less concerned with 
issues of computational time required and implementations; 
engineers often want to be able to filter images in “real 

time.” 

Interestingly, the image filtering problem is usually im- 
plemented in a sliding window fashion, with each instance 
of the filter producing one estimate of one pixel. In this 
manner, each estimation is scalar. However, the whole prob- 
lem is multivariate, not scalar. 

3. M-ESTIMATES 

M-estimates are the result of minimizing a loss function. 

For the simple location problem in independent and identi- 
cally distributed noise (iid), the estimate becomes 

P = argmin 2 p(z; - 5) 

i=l 



After taking a derivative with respect to f, one obtains “nor- l Too much computation may be required, even though 
mal equations”: the loss function is convex. 

0 = 2 *(xi - i) (2) 
i=l 

where Q(r) = c+(r)/&. 
For the least squares estimate, p(r) = r2 /2 and Q(r) = 

r; for the least absolute residuals estimate, p(r) = ]r] and 
q‘(r) = sign(r). 

Huber introduced the concept of “least favorable” dis- 
tributions and the corresponding minimax loss function: 

2~ = argmin 2 PH(Zi - 5~) (3) 
i=l 

or, equivalently, 

0 = 2 !PH(Xi - iH) (4) 
i=l 

where 
I92 b-1 5 k 
klrl - k2/2 17.1 2 k (5) 

and 
!@‘H(T) = max(min(k,r), -k) (6) 

The Huber location estimate has a number of desirable 

properties: 

l As k + +co, the estimate reduces to the sample 

mean; as k + 0, the estimate reduces to the sam- 
ple median. Thus, k can be considered as a robust 
tuning parameter. Small k’s yield robust estimates, 
while large k’s result in greater averaging. 

‘o Heuristically at least, the Huber loss function makes 
sense. Small errors, those most likely to be Gaus- 
sian in origin, are weighted quadratically; large er- 
rors, those more likely to be outliers, are given less 
weight than ordinary squared error does. 

l The Huber loss function is convex. Other, more ro- 
bust, loss functions are not. Convexity implies that 
the estimate can be computed by procedures that search 
for local optima. 

The Huber estimate is not without criticism: 

l In some situations, more robustness is needed. The 
loss function should increase less rapidly than IT], or 
even decrease. Note, these loss functions are non- 
convex which makes computation problematic. 

l Generally, there is little guidance in how to choose k, 
especially in time-varying situations (which make it 

difficult to measure a local estimate of scale). 

In the next section, we address the computation and scale 
issues and propose solutions. 

4. THE TRIMMED-HUBER FILTER 

We suggest choosing k so that a fixed fraction of the data 
points are “trimmed off”. We call this estimate the “trimmed- 
Huber” estimate (or jilter, depending on the application). 
The trimmed-Huber estimate is similar to the trimmed mean, 
but with one very important difference: the points can be 

trimmed off asymmetrically. Exactly which points get trimmed 
off are determined by the data. Below we illustrate a rela- 

tively simple algorithm that computes the trimmed-Huber 
estimate. This algorithm was originally presented in [l] in 
the context of multivariate robust regression. 

The idea behind the algorithm is to consider k as a pa- 
rameter that can be changed or adjusted. Initially, k = +co 
and the Huber estimate coincides with the sample mean, 
which is trivial to compute. Then k is reduced and the opti- 
mal estimate is continually adjusted until the desired num- 
ber of data points are trimmed off. Note, if k + +0, then 
the Huber estimate reduces to the sample median. 

For the moment, consider k fixed, and let z?H (k) denote 
the optimal Huber estimate as a function of k. Define the 

followingthree sets, A = {i : xi -aH(k) 5 -k}, B = {i : 
-k < Xi - ZH(k) 5 k}, and C = {i : k 5 zi - 2H(k)}. 
If some point, say j, has xj - 2~ (k) = fk then we say that 
point is at a corner. It can be arbitrarily assigned to either 
of the two possible sets. 

The normal equations reduce to 

0 = x(-k) + C(Zi - ?H(k)) + C k (7) 
%A iEB iEC 

Letting nA equal the number of elements in A, ng in B, 
and nc in C, we can easily solve for gH(k) 

g’H(k) = ng 
CieB Xi + kW - nA 

(8) 
nB 

= f?B+k 
W--A 

nB 
(9) 

where fB is the least squares estimate (sample mean) based 
only on those points in B. If the partition yields a consistent 
2.H (k), then we say the partition is valid. 

As a comment, this suggests a conceptually simple al- 
gorithm for computing ctH(k): guess a partition, compute 
?H(k), and check to see if the partition is valid. If so, then 
we are done; if not, guess a new one and repeat. While this 
may be acceptable in some situations, without guidance as 
to how the guessing should be done, the number of parti- 
tions checked may be unacceptably large. We will not con- 
sider this approach any further in this paper. 



The initial valid partition is n,J = 0, 71~ = n, r&c = 0, 

and k = +co, corresponding to the sample mean. Now 
assume that we have a valid partition for some k > 0. Com- 
pute ?H(k) as above. Now reduce k until some point is at 
a corner. Move it from set B to set A or C (whichever is 
appropriate). 

Assume the point is moving from set B to set A. Then, 

-k<xi-fB-knC-nA 
nB 

Simple rearrangement yields 

Similarly, if the point is moving from B to C, 

k> 
Xi - fB 

1 + y.inA 
(12) 

The new partition is valid for a new range of k. 
It is straightforward to show that I ncn;“AI 5 1. This 

guarantees that the directions of the inequalities above are 
correct and also that no point ever moves from A to B or 

from C to B. 
The only candidates to move out of B an any step are 

the smallest (to A) and the largest (to C). If the data is 

presorted, then only these two points need to be checked and 
the overall complexity will be O(n) (except for the sorting 
which will require O(n log n) in general.) 

Thus the algorithm is as follows: 

1. Presort the data. Set nB = n, nA = 0, and nc = 0 

and compute iB = cy=“=, xi and k = max 1~ - 2~1. 

2. Do until finished, 

(a) Check the smallest and largest elements in B to 

see which leaves. 

(b) Move that point out of B. Decrement ng, and 
increment nA or nc. 

(c) Compute the new estimate. 

3. COIllpUte ztH(k) = LtB + k(nc - nA)/ng. 

Each time through the loop requires O(1) operations 
and there are at most n - 1 times through the loop. Thus, 
on presorted data, O(n) operations are required. 

The trimmed-Huber estimate has the following advan- 

tages: 

l The amount of computation needed to compute the 
estimate is completely predictable. 

l When the samples are trimmed off symmetrically (so 
that nA = nc), the estimate coincides with the trimmed 
mean. 
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l The estimate can trim off the data points asymmet- 
rically. This is entirely reasonable, especially in the 
usual image processing situation of a fairly small slid- 
ing window. 

An edge region will contain points that are dissimilar 
from one another. The Huber estimate can trim off those 
points asymmetrically. Consider a one-dimensional signal 
with a perfect edge. Let the first 1 points be 0 and the next 
n - 1 be 1. Then as long as the number of points being 
trimmed off is at least n/2, the trimmed-Huber estimate will 
pass this edge perfectly. The only trimmed mean that can 
pass the edge perfectly is the limiting case of the median. 

5. NUMERICAL RESULTS 

As an example of how the computations go, consider the 

following (contrived) data set: X = { 1,2,4,8,16,32}. There 
are 6 data points. The results of computing the median are 
listed in the table below. (We are not suggesting that this 
is an efficient algorithm for computing the median, merely 
that the median is the end result if the computation is pur- 
sued that far.) 

This example illustrates some interesting points. Note 
that the first two samples trimmed off are both on the same 
side. As the estimates approach the median, nA M nc. 
(Recall, (nc - nA 1 5 nB .) Also, the contrived nature of the 

data results in a one-directional convergence to the median; 
this is not true in general. 

We also consider present the results of a simple im- 
age filtering experiment. Two images, lena and aerial, both 
512 x 512 with 8 bits per pixel, were filtered both with 
and without Gaussian noise by four sliding window filters: 
the mean, median, trimmed mean, and trimmed-Huber. In 
all cases, the window was 3 x 3. The trimmed mean and 
trimmed Huber both trimmed off 4 of the 9 points. Lena is 
typical of a fairly smooth image; aerial is a more detailed 
image. 

From the tables, we can see several things: The trimmed- 
Huber estimate generally performs best, especially when 
the noise is small or the image has sharp features. (Not 

shown here, but the trimmed-Huber estimate produces the 
best looking images.) The mean generally does the worst.’ 

lA fact which should surprise no one at this meeting! 
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o=o a=5 u = 20 
RMSE MAE RMSE MAE RMSE MAE 

Mean 5.26 3.27 5.23 3.63 8.52 11.12 
Trim Mean 4.50 2.81 4.94 3.35 8.75 6.81 
Trim-Huber 4.35 2.67 4.84 3.30 8.89 6.93 
Median 4.25 2.25 4.93 3.37 9.65 7.54 

Table 1: Measured RMSE and MAE for the Lena image filtered by four different filters. 

Mean 
Trim Mean 
Trim-Huber 

Median 

II a=0 a=5 
RMSE MAE RMSE MAE 

G 11.25 7.02 
9.73 5.49 9.99 6.03 12.60 9.08 
9.43 5.10 9.73 5.78 12.64 9.12 
9.54 4.51 9.91 5.69 13.36 9.71 

u = 20 
RMSE MAE 

12.98 9.23 

Table 2: Measured RMSE and MAE for the Aerial image filtered by four different filters, 

6. CONCLUSIONS 

This paper is merely a beginning at exploring the trimmed- 

Huber estimator. Future work will consider down-weighting 
samples further from the center and the search for optimal 
trimming fractions. Nevertheless, we believe the results pre- 
sented here are encouraging: The trimmed-Huber estimator 
combines much of the averaging capability of the mean and 

the edge passing ability of the median. It will outperform 
the corresponding trimmed mean in salt and pepper noise 
since it can trim off points asymmetrically. 

The trimmed Huber estimate can be extended to more 
general multivariate situations and can (relatively easily) ac- 
cept equality and inequality constraints. 

7. DISCLAIMER 

The views and conclusions contained in this document are 

those of the authors and should not be interpreted as repre- 
senting the official policies, either expressed or implied, of 
the Army Research Laboratory or the U.S. Government. 
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