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ABSTRACT 

We study in this paper the estimation of the mean using 
the order statistics of a sample of n random variables. 
This kind of estimation has been done by Bovik for 
independent identically distributed variables. In this 

paper we extend this work to correlated variables. In 
particularly we extend this kind of estimator to a new 

estimator using simultaneously the variables and their 
order statistics. We show that this new estimator per- 

forms better than the previous one by “learning” the 
correlation and the probability density function of the 
variables, without an a priori knowledge. At last an 
adaptive algorithm is given and a practical application 
is presented. 

1. INTRODUCTION 

Signal processing often needs to estimate the expected 
value of a finite length sequence of random variables 

{Xi}. Generally, this estimation is performed with a 
sample mean. It is well known that such an estimator 
is the best one (in the sense of the mean squared error 

(MSE)) when tl re a a are Gaussian and independent d t 
identically distributed (iid). But this property is no 
longer valid if the previous assumptions are not sat- 

isfied. As an example, for a uniform iid sample, the 
maximum likelihood estimator of the mean makes use 
of two order statistics [5]: jjl,,,le = Min,x;+Maxix, 
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Bovik developed a linear combination of order statis- 
tics (OS) to estimate expected values without an a 
PT~OT~ knowledge, contrary to the maximum likelihood 
method [2]. He only worked with iid noise and showed 

that the best OS unbiased estimator (BOSUE) per- 
formed better than the sample mean (in the sense of 
the least MSE). 

In this paper, Bovik’s work is extended to the case of 
colored noise, by mixing OS and usual linear estimator, 
taking into account the noise correlation. 

2. PRELIMINARY RESULTS 

Given a sequence of n random variables X1, . , X,, OS 
are defined by arranging these values X(i) 5 Xt2) < 
. . . 5 X(,1. X(i) is called the ith OS of the sam- 
ple. This nonlinear process complicates considerably 

the analysis, but a lot of results can be found in David 
[I]. Let m be the expected value of the sample, it can 
be written Xi = m + Bi, where Bi is a zero-mean vari- 

able. Hence, it can also be written X(i) = m + B(i). 
The following notations will be used 

3: = [Xl,...,XJ sample vector (resp. b) 

I = [X(l), . . .t X(r$ vector of the OS (resp. h) 

2 = E@] 

g = E[$] 

correlation matrix of j 

covariance matrix of b 

I. = [l,...,l]t constant vector 

a = [U~,...,UJ coefficients vector of the 
estimator 

Assume now that the Bi are iid. Assuming that the 
probability density function fb of the variables Bi is 
even, David [l], Bovik [2] and Pitas [3] have built the 
best OS unbiased estimator (BOSUE) of the constant 
m as follows 

l the estimator F% is linear to the OS: 6 = at F -- 

l the estimator is unbiased: 
gtE&J+rngtL=m 

E[g’ij = m, i.e. 

l the estimator is of least MSE: E[(gt 2 - m)‘] is 
minimum 

Under the assumption of symmetry of fb, E[a, which 
is not null, verifies E[Bc,+l-i)] = -E[Bti)] [1, 41. The 
estimator a is then considered to be symmetric, i.e. 

%+1-i = ai but this symmetry has to be verified a 
posteriori. As a consequence, the unbiasness condition 
holds 

at1 = 1 -- (1) 

Minimizing the MSE under condition (l), i.e. min- 
imizing E[(gt&)2] + X(a’i - l), and setting the La- 
grange multiplier X to verify the constraint, David [l] 



and Bovik [2] h ave evaluated the BOSUE as 

R-Q 
abosue = L 

ltR-‘1 -- - - 

(2) 

David has shown that the entries of 2 verify 

Rn+l-i,n+l-j = Ri>j. AS a consequence, the symmetry 

of abosue can easily be verified. Notice that the mean 

squared error is given by MSEbosue = 1, $, 1. For 
-- - - 

a Gaussian sample, Bovik showed that abOsuet z is the 

average of the variables X;, while for a uniform sample 

the estimator is equal to Min1 x* 3 MaxZ xt, which are 
the maximum likelihood estimator in these cases [5]. 

Similarly, given a finite number n of random values 

Xi, the best linear unbiased estimator (BLUE) is de- 
fined by 

r-11 
I 1 

ablue = k 
11 1 - 

Then, the mean squared error is given by MS&lue = 
1t rl-l 1. If the variables Xi are iid, r is proportional to - 
-= - 
the identity matrix and then, whatever their probabil- 
ity density, the BLUE is the average of the sample! so 
that the minimum of the MSE is reached only if the Xi 

are Gaussian. Finally, when the data are independent, 
the BOSUE performs always at least as well as the 

BLUE because the BLUE is, in this case, a particular 
OS estimator. The question we want to answer in this 
paper is: what happens if data are not independent? 

3. ESTIMATION OF THE MEAN OF 
CORRELATED VARIABLES 

Figure 1 shows two examples for colored noise, Gaus- 

sian or uniform [6], to compare BOSUE and BLUE. 
Notice that the results have been estimated by aver- 

aging the matrix used (e.g. &) on a 9 x lo4 points - 
simulated signal ( lo4 realizations of b). It. can be seen 
that BOSUE is no more better than BLUE when the 
data are correlated. So, we propose to combine both 
estimators, hoping that the linear part can learn the 
correlation of the data, while the nonlinear one learns 
the probability density! 

We now consider vector g = [ct $_“I”. Let UJ (respec- 
tively sod) be the linear part (respectively the OS part) 
of the estimator: a = [%t u,,~]~. The joint probability 

density function of the zero-mean sample is assumed 

to be even fl, ..,,(bl,. . .!b,) = fl,,.., ,(-bl,. . ., JJ,). 
First we will insist that the estimator be unbiased, t_hat 

is Eh’y] = m. It leads to the condition c+’ E[!j + 

mat1 = m. It can be shown,- under the assumption 
of symmetry of fl,,,,,n that EN is also antisymmetric 
(E[Bc,+l-i)] = -E[Bc;)]). Also considering that k 

Figure 1: BOSUE and BLUE for colored Gaussian and 
uniform noises (n = 9). 

is symmetric, the unbiasness constraint can always be 
written as ~‘1 = 1. Minimizing the MSE of the esti- 

mator under the previous constraint leads to 

(4) 

where X is the Lagrange multiplier. Unfortunately, 

the autocorrelationn matrix k the left hand side is sin- 

gular . Indeed, CBi = cl?(i). As a consequence 
i=l i=l 

k=[p -ItIt is in the kernel of E[ bt $]‘.k’ it]]. 

It can nbe sh:wn that its rank is 2n - 1, hence vector 

1, which is orthogonal to k, is in the range of this ma- 
trix, so that there are vectors a satisfying equation (4). 

The proposed solution is to remove the first component 
X1 of y to obtain a unique vector, whose dimension is 
2n- l- 

4-h 

where 

t = E[[Bz . . . B, B(I) . . . B(,)]“.[& . . . 8, B(I) . . . B(n)11 

and where the Lagrange multiplier has been adjusted 
to satisfy the constraint. As in the previous section, we 
verify a postem’ori that aos is symmetric. The associ- 

ated mean squared errorxthen MS&losue = 
ri-2. 

Notice that any Xi can be cancelled instead of X1, but 
we have chosen to not suppress an OS to conserve the 
symmetry of this part. 



Figure 2 shows the two same examples as the Fig- 
ure 1 for colored noise, Gaussian or uniform, to com- 

pare BLOSUE , BOSUE and BLUE. For the colored 

Figure 2: OS and linear parts of the BLOSUE 

for colored noises. Gaussian case, lMS&,losue = 

0.60 = MS&rue; uniform case, MSEbrosue = 0.74 = 

MS&osue. The dotted line recalls that the first vari- 

able has been cancelled. 

Gaussian case, the BLOSUE chooses clearly the mean 
estimation through the variables, and for the colored 

uniform case, the estimation through the OS is chosen. 
Notice that the OS part of the BLOSUE for the col- 

ored Gaussian noise is not null but constant, due to 
the cancelation of X1. Figure 3 depicts the BLUE, the 
BOSUE and the BLOSUE for 

filtered nonlinearly as follows 

X if 

nl(x) = -0.8x if 

0.4x if 

colored Gaussian noise 

1x1 58 
8 < 1x1 5 10 (6) 
1x1 > 10 

As expected, BLOSUE is seen to be always the best 
one. 

In all the previous simulations, matrices %, g and 

Ih ave been estimated by averaging. Practically these 

matrices are not known and hence have been estimated 
by this method. 

4. APPLICATION TO A PRACTICAL 
PROBLEM 

In most cases, matrices &, 1 or 4 of the data are not -- 
known and must be approximate=d, using an adaptive 
scheme, like a RLS method, for example [3]. Consider 
{xk} to be a signal. Let g denotes 5-l (resp. r-l, - 

Figure 3: BLUE, BOSUE and BLOSUE for the non- 
linear filtered colored Gaussian noise. MS&losue < 

MSEi,lue and MSEblosue < MS%,,,,. 

resp. 4-l), and let % denotes 3 = [xk . . .xk+~-~]~ 

the n l%t data (resp. &, resp. [xk-1 . . .xk+l+ a]). 
Let &k be an estimation of m at step k. M is then esti- 
mated using an average scheme (throughxe woodbury 
decomposition), which leads to the following recursive 

algorithm 

l Initialization step: 61 and A& 

l From step k to step k + 1: 

&+l = gk+l - mkl d 

Now let suppose that we have to estimate a time- 

varying mean, constant by step, corrupted by addition 
of zero-mean noise. As an example, we consider the 
case of a binary signal, which is constant only for finite 

durations. The three estimators BLUE, BOSUE and 
BLOSUE have been applied to such signals. Results 
are depicted on Figure 4 for iid uniform noise, and 6 
for colored Gaussian noise. Finally, Figures 5 and 7 
show the coefficients of those estimators and the evo- 
lutions of two of them. In these simulations we have 

“guessed” the transitive times of the algorithm seeing 
the evolutions of the two shown coefficients, hence only 



Figure 4: (A), binary signal; The signal is then cor- 

rupted by iid uniform noise (B) ; (C), estimation with 
the BLUE; (D) estimation with the BOSUE; (E) esti- 
mation with the BLOSUE. 

Figure 6: (A), binary signal; The signal is then cor- 

rupted by colored Gaussian noise (B) ; (C), estimation 
with the BLUE; (D) estimation with the BOSUE; (E) 

estimation with the BLOSUE. 

Figure 5: Uniform iid case: (A) and (B) represent the 
evolutions of abOsuel and c&,sue. ; (C) and (D) depict 

the BLUE and the BOSUE at the last step; (E) depicts 
the BLOSUE at the last step (linear part (left) and OS 
part (right) separated; a dotted line recalls that the 
first variable has been cancelled). 

Figure 7: Colored Gaussian case: (A) and (B) represent 
the evolutions of Ubosuel and obosue. ; (C) and (D) depict 
the BLUE and the BOSUE at the last step; (E) depicts 
the BLOSUE at the last step (linear part (left) and OS 
part (right) separated; a dotted line recalls that the 
first variable has been cancelled). 



the steady state of our algorithm is presented. It can 
be seen that when the noise is iid uniform, BLOSUE 
clearly chooses the OS estimator, which is the best one 

for iid noise. In return, when the noise is colored Gaus- 
sian noise, BLOSUE chooses the non-ordered variables: 

in this case, the BLUE is the best estimator. 

5. CONCLUSION 

BLUE and BOSUE can easily be mixed to produce 

BLOSUE. This one is always the best, because it is able 
to learn the correlation (through its linear part) and the 
probability density (through its nonlinear part) of the 
data. A simple solution has been established to remove 
the singularity of the problem. An adaptive algorithm 
is then proposed which is, in fact, able to learn the 

characteristics of the data. Finally, t,he method is seen 
to be attractive on an usual example. 
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