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ABSTRACT 

A nonlinear statistical speech production model based 

on AM-FM modulation and signal processing methods 
to extract the component signals are described. Pre- 
liminary ideas on using these signals to compute fea- 
tures for a Hidden Markov Model speech recognizer are 

presented. 

1. INTRODUCTION 

In this paper we describe a nonlinear speech produc- 
tion model, signal processing tools for the extraction 

of the information bearing subsignals from the speech 
signal, and preliminary ideas for the use of these sub- 
signals to compute features for a Hidden Markov Model 

speech recognizer. The basic idea is that the measured 
signal is modeled as a superposition of subsignals and 
each subsignal is a jointly amplitude- and frequency- 
modulated signal. Therefore, in continuous time, the 
measured signal s(t) is represented as 

s(t) = BUNCOS (2~1~ n(T)dr) (1) 
i=l -03 

where a;(t) is the ith amplitude message and fi(t) is 

the ith frequency message. The goal of the signal pro- 
cessing is to extract ai and fi(t) (i = 1,. . . , I) from 
the measured signal. 

The problem as stated is not well posed because 
the choice fi(t) = 0 for i = 1, . . . , I, ai = 0 for 
i = 2,... , I, and al(t) = s(t) provides an exact rep- 
resentation of s(t). Therefore, we need to introduce 
additional information about the ai (t) and fi(t). 

The natural goal of this approach is to represent a 
broad band signal s(t) in terms of narrow band signals 

ai and fi(t). E 4 ven if s(t) does not have a sharply 
peaked spectrum, this type of representation is promis- 
ing because the nonlinearity will cause bandwidth ex- 
pansion exactly as occurs in traditional frequency mod- 
ulation. 

The approach we pursue t.o extracting a;(l) and 
fi(t) from the data [l] is to introduce statistical mod- 
els for ai and Ii(t). I n addition, corresponding to 
the approximation problem, we hypothesize that the 
measured data is s(t) + w(t) where v(t) is a noise with 
known statistical properties. Then, under appropriate 
assumptions, the goal of reconstructing ai and fi(t) 
from s(t) + v(t) can be posed as a Bayesian cstima- 
tion problem and solved using nonlinear filtering ideas. 
WC call this statistical nonlinear filtering approach the 
Model-Based Demodulation Algorithm (MBDA). 

2. NOTATION 

Expectation is denoted by “E”. If x is a random se- 

quence then m,(k) k E[x(k)], R,(kl, kz) k E[z(~I)z(~~)], 

and p,(h, h) k E[(x(h) -7-~(h))(x(h) - 773,(b))]. 
Independent, and identically distributed is abbreviated 
by i.i.d. The Gaussian probability density function 
(pdf) with mean m and covariance A is denoted by 
n/(m, A). The notation “x w p” means that the ran- 

dom variable (RV) x is distributed according to the 
pdf p. Transpose is denoted T. The Kronecker delta 
function is denoted by 6k1,ka. 

3. THE MODEL AND SPEECH 

There has been extensive recent interest in taking a 
speech signal s(t) and extracting amplitude a(t) and 

phase d(t) modulations, i.e., y(2) = u(t) COS(~(~)), us- 
ing Teager’s energy operator [2, 3, 4, 5, 6, 7, 8, 91. 
Both the case of a linear superposition of terms [6], i.e., 

y(t) = ci UiP) cos(h(t)), and a single term observed 
in the presence of noise [2] have been investigated. In 

both cases, the signal is first passed through a bank 
of filters and then the energy operator is applied to 
the output of each filter. In the case of a superpo- 
sition of terms, the bandwidth of the ith filter is de- 
termined by the bandwidth of the term ai cos(&(t)) 
and the outputs of the ith energy operator are ui (t) and 



CJ$ (t). Therefore, each filter is responsible for a particu- 
lar term. In the case of a single term in the presence of 
noise, the bandwidths of the filters are determined by 
the trade-off between suppressing the noise and pass- 
ing as much signal energy as possible and the single 
signal is tracked (by an energy measure) as it moves 
from filter to filter. 

As described in Section 1, in the MBDA approach 
we simultaneously consider a linear superposition of 
terms and the presence of noise. In a qualitative sense, 

the nonlinear filter acts as a bank of bandpass filters 
where the center frequency of the ith filter tracks t.he 

instantaneous frequency of the a;(t) cos(di (t)) term and 
the bandwidth of the ith filter is set to achieve the op- 
timal trade-off between passing signal energy and re- 
jecting noise based on the statistical model. In this 
point of view, the parameters of the energy operator 

approach, specifically the bandwidth and center fre- 
quencies of the Gabor filters, are seen to qualitatively 
correspond to the parameters in the statistical model 

of MBDA. 

In speech! a discrete-time version of the model of 

Section 1 is more natural and the frequency f; is split 
into two parts: a slowly-varying center frequency de- 

noted by fi(k) (th e f ormant frequency with variation 
on time-scales greater than the pitch period) and a 
rapidly-varying message frequency denoted by v;(k) (the 
instantaneous frequency with variation on time-scales 
shorter than the pitch period). In addition, for each 

term in the linear superposition of subsignals, there is 
an instantaneous amplitude signal, denoted by ai( 
and a total phase signal, denoted by r$i(k). If de- 
tailed statistical knowledge concerning ai (Ic) , fi (k), and 

vi(&) is available, then it can be incorporated into the 
mathematical model. However, in the speech appli- 
cation, only rather imprecise information about power 

and bandwidth is available. Therefore, we have chosen 
simple dynamics: The instantaneous amplitude and in- 
stant,aneous frequency signals ai and V; are modeled as 
first-order autoregressive (AR) processes which allows 

independent control of the power and the bandwidth. 
The formant frequency f; is modeled as a random walk. 
This choice was made because we expect the formant 
frequency to remain constant over periods of millisec- 
onds in duration and a random walk is the only Gauss- 
Markov model in which such behavior has a large prob- 

ability of occurring. The dynamics of the total phase 
signal 4(k) are completely determined by its definition: 

h(k) = h(O) + 2flTC:it(fi(l) + vi(l)) where T is 
the sampling interval. The measured signal, denoted 
by y(k), is the linear superposition of the contribution 
from each formant, specifically, ai (k) cos(4i (Ic)), plus 
additive measurement noise. The complete model is 

therefore 

ai(k + 1) = a,,ai(k) + q,,w,,(k) (2) 

Q(k + 1) = Qv,Q(k) + qv,wv,(k) (3) 

fi(k + 1) = h(k) + Qf,Wf.(k) (4 

di(k + 1) = h(k) + 27rTf;(k) + 2nTvi(k) (5) 

Y(k) = ~Q(~)COS(di(lr)) + TV(k) (6) 
i=l 

where the process noises w,, , wVi, and wf, and the ob- 
servation noise 2’ are all iid N(0, 1) sequences; the ini- 

tial conditions are ui(O) - N(0, qi,/(l - crz,)), vi(O) - 

N(O,qi?,/(l-a~,)), h(O) - a~(mf,,o,$,,o), and h(O) - 
N(O,p$,,,); and the process noises, observation noise, 
and initial conditions are all independent. Notice that 
the initial conditions require that Icv,,) < 1 and la,, 1 < 
1 (since otherwise the stated variances are negative) 

in which case ai and vi are wide sense stationary ran- 
dom sequences. For later convenience, define 0 = (a,, , 

Qa*J aVi! 9YiY Qft Y r, mji,O1 Pf,,o, P$,,o). We estimate 
the parameter vector 0 by matching the second order 
statistics of the model to training data. 

There are several generalizations of the model spec- 

ified by Eqs. 2-6 that are of interest. The models for 
ai and v;(k) in Eqs. 2-6 are first order models and 
therefore have broad spectra that only rolloff gradually. 
However, one objective of AM-FM models is to model 
a relatively broad-band signal by nonlinearly combin- 
ing quite narrow-band signals. Therefore, narrow-band 
models, specifically, models with more narrow-band be- 
havior than first order models, are of interest. One 
choice that includes such narrow-band models is ARMA 

models, e.g., C,“=, aa,(j)a; (k-j) = Cy=, A, (j)w, (k- 
j) (crai(0) = 1). Th ese models can easl .I y be fit into the 

stat,e-space framework of Eqs. 2-6: Assuming q < p, 

define bi(lc) E RP, 

g = [l,O ,“‘, O]TERp, 

A, = [Pa,(O), . . . . %,(q),%...,OIT ERP, 

-Qa, (1) -%,(2) . . . -Qa, (P) 

1 0 * . . 0 
A,i = . 

1. : 0 0 . . . : I 

; 

0 

replace Eq. 2 by bi(lc + 1) = A,ibi(k) + gw,,(k); and 

replace Eq. 6 by y(k) = C~=,P~,bi(lc)cos(~i(lc)) + 
w(k). 

A second generalization to model slow variation of 

a signal is to use piecewise constant or piecewise lin- 
ear models. This can also be incorporated into the 
state-space framework of Eqs. 2-6. A piecewise con- 
stant model would replace Eq. 4 by fi( k + 1) = fi(k) +. 



qf, wfi (k)SkmodN,,-, while a piecewise linear model would 
replace Eq. 4 by the two equations 

f?(k+ 1) = f?(k) + qf,Wfi (k)‘kmodN,O 

f;(k+ 1) = f;(k) + [f:(k) - f; (k)]hmxw,o 

andreplaceEq.5by&(k+l) =4;(k)+27rT{[ft(k)- 

f%T(k)](k mod N)/N + f%:(k)} + 2rTvi(k). In both 
cases N is the distance over which fi is constant or lin- 

ear and might, for instance, equal the frame duration of 
the recognizer. These models are time varying but that 
does not introduce substantial additional computation 

in the nonlinear filters of Section 4. 
A third modification, motivated by sinusoidal speech 

models [lo], is to replace the time-varying formant fre- 
quencies by a larger number of fixed frequencies. This 
can also be incorporated into the state-space frame- 

work of Eqs. 2-6: delete Eq. 4, replace Eq. 5 by 4i(k + 

1) = h(k) + PnTvi(k), and replace Eq. 6 by y(k) = 

C:=, ui(k)cos(2xTfik + g&(k)) + w(k) where fi are 
the fixed frequencies which might be chosen according 
to f; = fi + iA for constants fi and A. 

4. NONLINEAR FILTERS 

If ai was constant then Eqs. 2-6 describe a frequency 
modulated communication system, the Extended Kalman 
Filter (EKF) [ll, Section 8.21 is essentially a phase- 
locked loop (PLL), and the PLL is an excellent esti- 
mator. Therefore, we compute the estimates &(klk), 

k(klk), h(W), and +i(klk) (hereafter, we will not in- 
dicate the conditioning which is always kJk) by using 

the EKF for this more complicated model. The com- 
putational requirements are minimal: the state equa- 
tion is already linear, the one-step state transition ma- 
trix (denoted by F) is block diagonal (1 block per for- 

mant) and each block is sparse so multiplication by F 

is inexpensive, and the observation is a scalar so the 
one matrix inversion is actually division by a scalar. 
The result of the EKF are the estimat.es hi(k), tii(k), 

fi(k), and &(k). F rom these estimates we can com- 
pute a reconstructed speech signal, denoted by c(k), 

by e(k) = Ci &i(k) cos(di(k)). 

More sophisticated nonlinear filters than the EKF 
could also be used, e.g., Refs. [12, 11, 131. However, we 
have achieved interesting results using the simple EKF 
and, when using more sophisticated filters, problems of 
robustness and failure of the model statistics to match 
the data statistics become more severe. 

5. SPEECH EXAMPLE 

Tn this section we describe the application of these ideas 

to the sentence “Even then, if she took one step forward 

he could catch her.” from the TIMIT database [14, 
drl/fcjcO/si1207]. The model has 4 formants with ini- 
tial conditions mf,,s of 500, 2000, 2900, 4100 Hz for 
i = 1, 2, 3, and 4 respectively. For all 4 formants, 
crai = a, = .gg, Pf,,O = 
ues of qo,l qy,, 

0, and p+,,o = 0. The val- 
and qf, vary from formant to formant: 

qa, = mm, m, m, m; qv, = fl, 7,10,10; 

and qf, = fl!a,&$,l for i = 1,2,3,4respec- 

tively. Finally, r = m. The spectrogram of the 
original speech with superimposed plots of the esti- 
mates fi(k) is shown in Figure l(a). [The spectrogram 
is computed by dividing the signal into 8 ms frames 
(each contains 128 samples) with 4 ms (64 sample) 
overlap between adjacent frames and then computing 
the magnitude (in dB) of the 128 point FFT of each 
frame]. In Figures l(a,b), the formant tracks extend 
through regions of the spectrogram where there is lit- 
tle energy because at sample k we plot the ith formant 
track fi(k) even when the energy in the ith formant 

(essentially the energy in ai( is small. The spec- 

trogram of p(k) (i.e., the speech reconstructed from 
the EKF outputs) is shown in Figure l(b) and closely 
matches the speech spectrogram shown in Figure l(a). 
Figures l(a,b) demonstrate the smooth behavior of the 
the EKF estimates and the accurate reconstruction of 

the speech in unvoiced regions even though the model 
used by the EKF is really a model for voiced speech. 

6. SPEECH RECOGNITION 

In the Hidden Markov Model (HMM) approach to speech 
recognition, the initial step is to transform the speech 
signal into a sequence of feature vectors. By remov- 

ing aspects of the speech signal that are irrelevant for 
recognition, this step achieves data compression and 
simplifies the estimation of conditional measurement 
probability densities in the HMM. If the AM-FM mod- 
ulation model for speech production describes physical 
behavior that, is missing in linear speech production 

models, then features based on the AM-FM modula- 
tion model may improve the performance of HMM rec- 

ognizers. 

A natural first step toward using AM-FM features 
is to determine how the AM-FM model can be used 
to generate features analogous to standard features. 

Two important classes of standard features are spec- 
tral features derived from filter banks and from linear 

predictive coding (LPC) [15] and here we focus on filter 
banks. Let s(k) be the input speech signal and Hj(z) 
be the filters in the bank which are FIR linear phase fil- 
ters with center frequencies fj and bandwidths Wj and 

which approximately satisfy CfZj Hj (exp(jQ)) = 1. 
We pass s(k) through Hj to generate yj (k). We trans- 
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Figure 1: The sentence “Even then, if she took one step forward he could catch her.” (a) Original spectrogram 
and estimated formant tracks. (b) Reconstructed spectrogram and estimated formant tracks. (c) Standard filter 
bank features. (d) EKF-based features. 



form from passband to baseband by low pass filtering 
fiyj(lc) cos(2rfjTlc). We subsample the result based 

on the bandwidth VVj to give a set of signals uj(k). At 
least approximately it is possible to recover the speech 

signal s(k) from the signals uj (k). Traditional filter 
bank features, denoted by <j(k), are computed by tak- 
ing the absolute value of uj(k), low pass filtering, and 
subsampling to the frame rate where the bandwidth 
of the low pass filter is chosen so that the frame rate 
is the Nyquist rate. New features analogous to filter 
bank features and denoted by vj(lc) are computed in 
two steps. First, apply an EKF (based on a 1 formant 
model with fi fixed at 0) to the signals jlj(k), to esti- 

mate bj(k), Jj(k), and tij(k). Then apply exactly the 
same processing used to transform uj (Ic) to [j(k) for 

traditional features to transform tij(lc) to vj(lc) for new 
features. The reason we compute Uj (k) signals in a way 
that makes it possible to at least approximately recon- 
struct s(k) is that, the AM-FM model is supposed to be 

a speech production model so it is most natural to use 
it on signals from which speech can be reconstructed. 
The reason for applying the EKF to uj(lc) rather than 
the speech itself is that it requires less computation: in 
order to get narrow band estimates we would have to 
generalize the model of Eqs. 2-6 with some of the ideas 

in the final paragraphs of Section 3 and a J-formant 
model of that type requires significant computation. 

In Figures l(c,d) we show the j = 3 components of 
traditional and new features for a system with J = 9; 

80th order linear phase FIR bandpass filters with pass- 

bands of [loo, 4001, [400, 7001, [700, lOOO], [lOOO, 13501, 

[1350, 18001, [1800, 24001, [2400, 32801. [3280, 46901, 
[4690, 71501; a 300 Hz bandwidth for the first low 
pass filter; a subsampling by l/26 to compute uj(k); 
a 33.3 Hz bandwidth for the second low pass filter; a 
subsampling by l/9 to compute cj(k); and an EKF 
with parameters qa = 1, qv = 9, a, = CY” = 0.99, and 
P = 0.2. The plots are time-shifted to remove the de- 
lay introduced by the linear phase FIR filters. With 
this set of EKF parameters, the two sets of features 

(Figures l(c,d)) are very similar because the EKF is 
constructing the signal primarily by varying the ampli- 
tude a(/~) with only small variation of the phase d(k). 
If the bandwidth of a(k) in the model used by the EKF 
is decreased, then the EKF constructs the signal with 
more equal variation in the amplitude a(k) and the 

phase 4(k). 
Similar processing applied to $j(k) - 2nfjTk will 

yield new features, which are phase-sensitive features, 
based on the AM-FM model. 
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