
A COMPARATIVE STUDY OF THE COMPLEXITY 
OF MULTIVARIATE MEDIANS 

Mauro Barni and Vito Cappellini 

Department of Electronic Engineering, University of Florence 
Via di S.Marta, 3, 50139 - Firenze, ITALY 

e-mail barni@cosimo.die.unifi.it 

ABSTRACT 

Multivariate median filters represent a powerful tool for 
edge preserving noise removal from multichannel digital im- 
ages. However, the usability of such filters in practical ap- 
plications is often limited because of their high computa- 
tional complexity, all the more that a comprehensive anal- 
ysis of the complexity of the various classes of multivari- 
ate medians is still missing. In this work, the complex- 
ity of many multivariate extensions of the median filter is 
briefly discussed. Both theoretical analysis and experimen- 
tal results show that the computational complexity depends 
mainly on the strategy adopted to sort multivariate data. 
The use of marginal ordering leads to the fastest algorithms, 
filters relying on reduced ordering have an intermediate be- 
havior, whereas those based on aggregate ordering are by 
far the most complex. 

1. INTRODUCTION 

Considerable attention has recently been paid to the exten- 
sion of scalar ranked-order filters to the multichannel case; 
to this aim, several schemes have been proposed trying to 
define a multichannel vector median operat,or with proper- 
ties similar to those of its scalar counterpart. A problem of- 
ten arising with multivariate median filters is computational 
complexity; all the more that, though the noise removal ca- 
pabilities of these filters have been thoroughly investigated, 
a comprehensive analysis of their complexity has not been 
carried out yet. 

‘Virtually all the multichannel order-statistics filters pro- 
posed so far are based on three different ranking schemes. 
According to the classical definition by Astola et al. [l], the 
aggregate ordering technique (21 is used: input samples are 
ordered on the basis of the sum of the distances to all the 
other points in the window. The output of the Vector Me- 
dian filter (VM filter) is chosen as the first ordered sample, 
i.e. the point for which the sum is minimum. VM filters 
are a natural extension of scalar median filters, however, 
their high computational load prevents their use in many 
applications. 

Filters based on multivariate reduced ordering (R-VM 
filters) have been first introduced by Hardie and Arce [3]: 
samples are ordered according to the distance to a properly 
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chosen central point and the first ordered sample is the out- 
put of the filter. In [3] the effectiveness of this class of filters 
is carefully analyzed and its good filtering capabilities high- 
lighted for the special case in which the sample mean vector 
is chosen as the central point. As to complexity, R-VM fil- 
ters represent a considerable improvement with respect. to 
VM filters, since a lower number of distances must be com- 
puted at each window location. 

The simplest ranking scheme is marginal ordering [2], 
which consists in the independent ordering of the input 
sample components. The use of marginal ordering leads 
to the definition of the Marginal ordering Vector Median 
filter, (M-VM filters, [4]), which corresponds to the compo- 
nentwise application of the scalar median filter. The M-VM 
filter and its generalized versions couple good filtering ca- 
pabilities and low complexity [4], however, they can not be 
used in applications where closed operations are mandatory. 

In this note, the problem of determining the complex- 
ity of filters belonging to the above three classes is briefly 
addressed. 

Throughout the rest of the paper, an n x n filter win- 
dow will be assumed; let also IV = n x T-L be the number 
of samples contained in the filter window, with each sam- 
ple being a point in RP. The complexity of the filters will 
be computed in terms of the number of square roots, prod- 
ucts, additions (actually algebraic sums, i.e. additions and 
subtractions), and comparisons that must be performed at 
each window location, and it will be considered as a func- 
tion of n. Finally, we will suppose filtering is carried out by 
scanning the image by rows, from left to right. 

2. CLASSICAL VM FILTERS 

Given N samples {Zr...Zrv} in Rp the output of the vector 
median operator is defined as [l] 

( i=l i=l 

where 11 11 is a norm in Rp. The direct application of equa- 

tion (1) requires the evaluation of the distances between all 
the possible couples of samples, i.e. (n* - l)n*/2 = O(n4) 
vector distances. By using a running algorithm faster oper- 
ations can be achieved. More specifically, at each window 
location, the vector median operator is carried out by means 



of a 3-step process: i) the distances between the points leav- 
ing the filt,er window and those which were already inside 
it. at the previous step are computed; ii) for each point, the 
sum of the distances to all the other points is updated by 
subtracting the distances to the points leaving the window 
and by adding those to the ones entering it; the sums rel- 
ative to the new points are computed from scratch; iii) the 
point with the minimum sum is chosen. The first step re- 
quires the computation of (n2 - n)n + n(n - 1)/2 distances; 
for the second one, 2n(n2 - n) algebraic sums are necessary 
to update the old sums and n(n* - 1) additions are needed 
to initialize the sums of the new samples; finally, n2 - 1 
comparisons must be performed to choose the sample for 
which the sum of distances is minimum. 

To determine the actual number of elementary opera- 
tions required by a VM filter, the metric adopted to com- 
pute distances must be taken into account. Such numbers 
are summarized in Table 1: whereas the overall complexity 
of VM filters is given in Table II. By focusing on asymptotic 
complexities, it turns out that the VM2 filter has the high- 
est complexity, since it requires the computation of O(n3) 
square roots, O(n3) multiplications and O(n3) additions. 
The complexity of the VM filter based on squared Euclidean 
metric is O(n3) too, but only multiplications and additions 
are involved. Finally, the VM1 filter exhibits the lowest 
complexity, since only O(n3) additions and O(n3) compar- 
isons must be evaluated. 

2.1. Fast VM Alters 

To reduce the complexity of VM filters several fast algo- 
rithms have been proposed [5] [6] [7]. In [5] a fast algorithm 
is described for the squared Euclidean VM filter (F-VMZ fil- 
ter). The algorithm relies on the fact that the sample min- 
imizing the sum of the squared Euclidean distances is the 
point closest to the window centroid & (the sample mean 
vector). This suggests the possibility of choosing the VM 
by simply computing the distance between each sample and 
&. Once again the algorithm consists of 3 steps: i) evil- 
uation of &; ii) computation of the distance between the 
samples and &; iii) choice of the minimum distance sam- 
ple. If a running algorithm is used to compute the sample 
mean vector, 2pn additions and p divisions are needed to 
perform the first step. The choice of the point closest to the 
centroid can be carried out through the computation of n* 
squared Euclidean distances, i.e. pn* multiplications, 2pn* 
additions and n* - 1 comparisons. Henceforth, the com- 
plexity of the F-VM: algorithm is O(n2) both in terms of 
multiplications and additions, which constitut.es a consid- 
erable improvement with respect to the O(n3) complexity 
of classical algorithms. 

VM filters based on l-norm and 2-norm are preferable 
to the VMZ filter because of their superior edge preserv- 
ing capabilities. With regard to the Euclidean VM filter, 
no fast algorithm has been proposed so far, instead, at- 
tempts trying to speed it up rely on the approximate fast 
computation of the Euclidean distance (AF-VM2 filter [6]. 
The overall scheme of the algorithm is the same as that 
of classical implementations, the only difference being the 
number of elementary operations required t,o compute the 
approximate distance. An accurate description of the ap- 

proximation used to speed up the computation of the Eu- 
clidean norm is outside the scope of this brief note, here it, 
only needs saying that the general form of the approximated 
norm is 

II 37 II2 = II 3c Il%aPP = kai ( “(i) 1 (2) 
i=l 

where the ai’s are suitable constant and z(;) indicates the 
i-th ordered components of vector Z If sorting of compo- 
nents is achieved by means of the quicksort algorithm (an 
O(plogp)-comparisons algorithm), it can be readily seen 
that the asymptotical complexity of the AF-VM2 filter is 
O(n3) multiplications, additions and comparisons, that is 
the same of the VM2 filter except for the evaluation of O(n3) 
square roots. 

As concerns l-norm vector median filtering, a fast algo- 
rithm has been proposed recent.ly in [7]. Again, the exact 
description of the algorithm and the discussion of its com- 
plexity would be too a long task to fit in this brief note, 
however, the basic idea the algorithm relies on is very sim- 
ple and will be outlined below. Given a point Z in Rp, 
the sum of distances between Z and the window samples is 
considered as a cost functional j(Z). Let Z,,, be the point 
where f(Z) assumes its absolute minimum. If I, is known 
and the difference d; = f(Zi) - f(Z,,,) can be computed 
easily for each point Zi of the filter window, then a fast 
algorithm is achieved by minimizing d; instead of f(s). In 
this way, in fact, only n* differences must be computed thus 
leading to an O(n*) algorithm. Of course, this is true only 
if the time spent to compute Z,,, is negligible with respect 
to the overall computation time. Indeed, this is always the 
case, since the non-constrained minimization of f(Z) corre- 
sponds to the componentwise application of the scalar me- 
dian [5], which is a very fast operator [8]. For a discussion 
of how the di’s can be calculated the reader is referred to 
[7], here it is only important to point out that the l-norm 
fast median filter (F-VM1 filter) can be split into 2 parts: 
first the scalar median is componentwise applied, then the 
differences di’s are computed and the minimum one is se- 
lected. With regard to the first part, it can be shown that 
only O(n) comparisons are required (81. The second part, 
instead, requires the computation of n* d;‘s. In [7] it is 
also demonstrated that each di can be computed by means 
of O(p) additions only, thus yielding an overall asymptotic 
complexity of O(n*) additions and comparisons. Indeed, 
the F-VM1 filter represents a significant improvement with 
respect to the classical implementation of VM filters. 

3. MARGINAL VM-FILTERS 

The simplest way to extend the ranking of a set of samples 
to the Rp case is marginal ordering [2] [4]. In marginal 
ordering, multivariate samples are ordered independently 
along each dimension, that is: 

Z(l)*,1 5 =(*)I.1 5 ... I Z(N)l,l 

x(1)2,2 5 2(2)2.2 5 . . . 5 z(N)2.2 
(3) 



Table 1: Number of elementary operations required to evaluate a distance in RP. Absolute values and comparisons are 
considered toghet,er 

Distance metric 

Operation P-norm squared P-norm l-norm approx. P-norm 

Square roots 1 

Mult. & div. p P P 

Additions 2P 2P 2P 2P 

Comparisons - P P + wg P) 

Table 2: Complexity of VM filters. For the F-VM1 case the signal is assumed to be uniformly distributed between 0 and a 

Asymptotic complexity 

Filter type Square roots multiplications additions comparisons 

VM2 O(n3) O(n3) O(n3) O(n2) 

VM; O(n3) O(n3) O(n2) 

VW O(n3) O(n3) 

F-VM; O(n2) O(n2) O(n2) 

AF-VM2 O(n3) O(n3) O(n3) 

F-VM1 O(n2) O(n2) 

where Z(i)j ,j is the j-th component of the i-th ranked sam- 
ples, where ranking is performed with respect to the j-th 
component. Marginal ordering Vector Median filtering (M- 
VM filter) is obtained by selecting for each component the 
(v + 1)-th ranked sample (2~ + 1 = N), i.e. by component- 
wise applying the scalar median filter 

z&f--VM = (2(,+1),,1,2(,+1)2,2, -%+l)p,P) (4) 

Note that the output of the M-VM filter may not correspond 
to any of the input samples. The complexity of the M-VM 
filter is easily derived by noting that it corresponds to p ap- 
plic,ations of the scalar median. On the other hand, in the 
common case in which sample values are integer numbers, 
a very fast algorithm can be used to implement the scalar 
median filter (running median [8]) . According to it, the 
histogram of the points inside the window is built and the 
median of the histogram is chosen as the filter output. More 
specifically, at the beginning of each row the histogram is 
built from scratch, whereas at the other locations the new 
histogram is obtained by updating the old one according 
to the values of the points entering and leaving the win- 
dow. Also the median of the histogram is not computed 
from scratch at, each window location, inst,ead the number 
of points lying on the left of the old median is continuously 
updated, and the median position is moved to the left or to 
the right according to the number of points currently on its 
left. By noting that at each new location n points out of 
n2 are changed, and that only comparisons are needed to 
update both the median and the window histogram, it can 

be argued that the complexity of the M-VM filter is equal 
to O(n) comparisons, thus leading to very fast operations. 

Many modifications to the basic M-VM filter have been 
proposed to achieve better performance in presence of Gaus- 
sian noise: e.g. the a-trimmed Vector Mean filter (M-(rVM 
filter,) the Vector Modified Trimmed Mean filter (V-MTM 
filter), the Vector Double-Window Modified trimmed Mean 
(V-DW-MTM filter) [4], however, truly speaking most of 
these filters can not be considered as real vector medians, 
and will not be considered further. 

4. REDUCED VM-FILTERS 

The last class of multivariate median filters is obtained by 
considering reduced ordering (Reduced ordering Vector Me- 
dian filters, R-VM filters) [3]. In reduced ordering, multi- 
variate samples are ordered according to their distance to 
a given central point. Many different schemes can be de- 
fined according to the choice of t,he central point and to the 
metric employed to calculate distances to it. Let us begin 
with the R-VM2,,,,, filter, that is an R-VM filter which 
uses the sample mean as the central point and the (squared) 
Euclidean metric to compute distances (note that, since dis- 
tances to the central point are only used to sort samples, 
the squared Euclidean metric can be used instead of the 
linear one, which is more complex to calculate). For each 
window location the sample mean has to be computed first, 
by using a running algorithm this can be accomplished by 
means of 2np additions and p divisions. In addition, pn2 
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Figure 1: Compmation time of some multivariate median filters. The shaded areas depicts the range where the computation 
time of filters based on different sorting schemes lies. Data refer to 256 x 256 RGB images. 

multiplications, 2pn2 additions and n2-1 comparisons must 
be performed to compute distances and to choose the min- 
imum distance sample. Similar considerations hold for the 
R-VMr,,,,,,, filter, i.e. a filter which orders samples ac- 
cording to their distance to the window sample mean. 2np 
additions and p divisions are required to update the sample 
mean, while 2pn2 additions, pn2 absolute value and n2 - 1 
comparisons are needed to choose the minimum distance 
point. When the marginal median is used as the central 
point, the R-VMz,,,d and the R-VMr,,,d filters result. In 
both cases, the first step consists in the application of the 
M-VM operator, whose complexity has been shown to be 
equal to pO(n) comparisons. Then, n2 distances must be 
evaluated and the point for which the distance is minimum 
selected. As before, this calls for the computation of pn2 
multiplications, 2pn2 additions and n2 - 1 comparisons for 
the R-VM s,ned 
ues and n2 

case, and 2pn2 additions, pn2 absolute val- 
- 1 comparisons in the R-VMi,med case. An 

interesting solution for the choice of the central point has 
been proposed by Tang et al. (91, which introduced the VRr 
filter as the sample in the window which minimizes the sum 
of distances to &, & and Z,,*: 

&RI E {dl,z2...zN} 

i- 

2VR1 = arg min (11 ?,, - ?!; 112 $ 
i=l...N (5) 

II &I - zi 112 + 11 d* - 5’; 112) 

where 3c,,* is the window central point. The application of 
the VRr filter requires the sample mean and the marginal 
median to be computed at each window location, which 
in turn requires 2np additions, p divisions and O(n) com- 
parisons; besides, for each window sample, the sum of 3 
Euclidean distances must be evaluated, i.e. 3n2 square 
roots, 3pn2 multiplications and 6pn2 additions. At last, 
n2 - 1 comparisons are needed to pick the sample with 
minimum sum of distances. The overall complexity, then, 
is st,ill O(n’), but the presence of 3n2 square roots makes 

the algorithm less attractive from a computational point 
of view. A possible solution to get around the problem, 
has been advanced by Tang et al. [9] which suggest to use 
squared distances, that is: 

( 

&R2 E {i?l, z2...3cN} 

&‘Rz = QrC7i=~~,~N{II 51 - 3ci II; + 

II &n - 5 11; + II G* - 5 II;> 

which can be reduced to the more pleasant form 

(6) 

{ 

&R2 6 {&,,-2...,-N} 

&R* = av &yN {II zc - 5 II;} (7) 

with Z= = (& +h +&*)/3. In this way the filter complex- 
ity is noticeably reduced, since in addition to the computa- 
tion of the sample mean, the marginal median and their lin- 
ear combination, only n2 squared Euclidean distance must 
be computed. The overall filter complexity, then, is pn2 
multiplications, 2p divisions, 2p(n2 + n + 1) additions and 
n2 - 1 + O(n) comparisons. 

A slightly different approach to R-VM filtering has been 
proposed by Hardie and Arce [3] (VRE filters). According 
to their proposal, the samples are first sorted according to 
reduced ordering, but &,* is substituted only if its distance 
to the central point used for sorting is larger than that of 
the sample with a predefined rank. Though the filtering 
behavior of the VRE filter has some original characteris- 
tics, from the point of view of computational complexity it 
behaves as the R-VM filters analyzed above. 

5. TESTS AND COMPARISONS 

The above theoretical analysis has been validated through 
exhaustive testing. All the multivariate filters have been 
implemented and their computing requirements measured. 
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Figure 2: Fast algorithms permit to reduce significantlv the computation time of VM filters. Data refer to the filtering of a 
256 x 256 RGB images. - 

Filters have been applied to a 256 x 256 RGB image (the 
popular pepper image) corrupted with contaminated Gaus- 
sian noise (0 = 20, spike rate = 5%). Noise has been added 
independently to each image component. Filters have been 
run on a DecStation 5000/240. The results we have ob- 
tained are reported in the diagrams of figures (1) and (2). 
In figure (1) the computational complexity of the various 
classes of filters is depicted. The range of complexities char- 
acterizing the filters of each class is highlighted by shadow- 
ing the area between the lowest and the largest computing 
time for that class. With only few exceptions (V-MTM, 
V-DW-MTM and VRr filters), filters belonging to the class 
of marginal medians have the lowest complexity, whereas 
VM filters are charact,erized by very large computing time. 
As expected, the complexity of multivariate medians based 
on reduced ordering is half-way between those of VM and 
M-VM filters. 

In some cases the use of fast algorithms permits to lower 
the’computational burden considerably. This is the case of 
the F-VMr and F-VM; filters. In figure (2) the computation 
saving achievable through these filters is pointed out. As 
it can be seen, the use of the fast algorithms permits to 
reduce the computational complexity to that typical of R- 
VM filters. This is quite obvious for the F-VM; filter, since 
in [5] it is demonstrated that such a filter is equivalent to 
the R-VM2,,,,, filter. On the contrary, the F-VMr filter 
represents a major improvement, since it permits to achieve 
the performance of classical vector medians at a computing 
cost which is typical of R-VM filters. 
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