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ABSTRACT 

In this paper some properties of conditional morphology 
for image restoration are presented. 
Conditional morphology is a nonlinear method for 
coupled edge detection and image smoothing and it is 
derived from the fusion of two nonlinear Bayesian 
approaches: statistical morphology and the deterministic 
annealing solution to Markov Random Fields models. 
The proposed method resulting from fusing these 
approaches, is based on Mean Field Theory, which 
represents a common theoretical framework able to 
provide a computational simplification to the problem 
solution together with maintaining the robustness of 
Bayesian models. 
Experimental results are presented showing good 
performances obtained by the proposed approach on 
image affected by impulsive multiplicative noise (e.g. 
speckle noise). 

1. INTRODUCTION 

Low level image processing usually involves the problem 
of coupled edge detection and image restoration. Both 
edge and restored images are often required by higher 
level processing modules, for example for pattern 
recognition tasks. 
In literature several methods for coupled edge detection 
and image smoothing are proposed. Among them, 
Bayesian methods can be classified in deterministic [l] 
and stochastic [2] methods, depending on the used 
approached for estimating the solution. 
One of the most known deterministic approach was 
proposed by Geiger and Girosi and it is based on Mean 
Field Theory (MFI) [l]. MFT is used for generating an 
equation which involves the variables of the fields to be 
estimated by modifying a parameter B in a recursive way, 
according to a continuation method. 
This method is proven to be computationally more 
efficient than stochastic methods, but it remains quite 
complex from the computational point of view. 
Statistical morphology [3] aims at generalizing 
mathematical morphology (MM) by means of the 
introduction of a probabilistic model including MM as a 
particular case; the output of statistical morphology is 
obtained by applying MET, which allows one to define 

filtering operators presenting robustness and 
computational simplicity characteristics. 
In this paper, the probabilistic model presented in [4] is 
discussed; on the basis of the common theoretical 
framework given by the MIT, it allows one to extend 
statistical morphology for solving smoothing and edge 
detection problems simultaneously. The proposed method 
is based on the model proposed in [l]: it represents 
explicitly both intensity and discontinuity variables and it 
applies MET for defining operators more general than 
statistical morphological ones. 
Consequently, conditional morphological operators are 
defined starting from statistical morphology [3] and the 
deterministic solution to MRFs model [ 11. Further, in this 
paper an analysis of the behaviour of the conditional 
morphological operators is performed and experimental 
results are shown. 

2. CONDITIONAL MORPHOLOGY 

Conditional morphology [4] allows one to perform edge 
detection and image smoothing simultaneously by means 
of the fusion of statistical morphology [3] and the MRF 
based method presented in [ 11, 

2.1 Statistical morphology 
Statistical morphology is a new formulation of classic 
morphology which makes it more similar to the Bayesian 
approach. Yuille in [3] redefined basic (dilation and 
erosion) and complex (opening and closing) 
morphological operators under a probabilistic point of 
view. 
This methodology involves a temperature parameter T (l/ 
B), whose values change the behaviour of the filter: in fact 
for T-W (B+O) morphological classic operators can be 
obtained, while for T+O (B-N-) linear filtering is 
performed. 
In mathematical morphology the elementary operations 
are dilation and erosion which consist in maximum and 
minimum operators respectively. 
In statistical morphology, dilation and erosion can be 
defined respectively winner-take-all and loser-take-all 
operations which select value in a particular subset 
(neighbourhood set) of the image. By considering the 
input pixel values 1i and the SE Bi (Fig.1) shifted on 



each pixel i, for a specific pixel i, Yuille et al defined 

binary decision units such that Vioj =l and Viok =0 for j 

# k; this means that j-th input is selected as the winner at 

the i,,-th site. 

l = pixels of SE 

- pixel i-th 

Fig. 1: Example of Bi centred on i-th pixel 

In this way it is possible to represent each possible 

solution for the pixel i,, by means of the set of variables 

{Vi,,,} = (Vi,,,,Vi,,2 , Vi,,3 , . . . . . . . . . Via,,) where n is the 

number of pixels inside SE and with the following 
constraint C ViO,i = 1. 

jdE 

By introducing the parameter B and following statistical 
physics [3], a Gibbs distribution is defined for each 
configuration: 

where Z represents the partition function Ce Pj . 
jdE 

By applying minimum variance estimation to (l), the 
mean-field equation for statistical dilation is obtained: 

OwCli)= C 

,prk 

~1. k I 
kdE Ce”J 

jdE 

(2) 

Eq. (2) shows that the solution for statistical dilation at 
pixel i depends on the parameter B and the grey-level 

values of pixels that falling inside Bi. 

Analogously, Yuille et al. [3] derived the solution for 
statistical erosion: in this case the solution has the form of 
eq. (2) in which B assumes negative values. 

2.2 Deterministic annealing solution to MRF models 
The method proposed in [l] allows one to perform edge 
detection and image smoothing simultaneously by means 
of two coupled MRF (F,L): F represents the filtered image 
intensity field and L represents the presence or the 
absence of a discontinuity between two neighbouring 
pixels (line process). More precisely: 
- F = { F; : i=l,....., MxM} where 4 represents the image 

intensity of i-th image pixel (Fig.2); MxM are the 
number of pixels composing the image I; 

- h = {hi,m~ [O,l] : i=l,...., MxM} where hi,, represents 

the horizontal line process between i-th and m-th 
neighbour pixels (Fig.2); 

- v = { v;,~E [O,l] : i=l,....,MxM} where Q. represents 

the vertical line process between i-th and r-th neighbour 
pixels (Fig.2). 

I I 

Fig. 2 

The input/output relation is a conditional probability 
density fb (F, L, /I) ; according to the Bayes theorem, it is 

possible to write: 

Pp(F,LI I)= 
Pp(!lF,L).P(F,L) 

P(I) (3) 
where q( I / F, L) is a term that represents the noise in 

the image and depends on the image acquisition. 
P(F,L) represents a priori knowledge on the image (e.g. 
piecewise linear structure) and in this case it moulds the 
discontinuities in the image by means of the difference 
between the values (F) of neighbouring pixels. In 
particular in [ 1 ] was used the Weak -Membrane model: 

P(F L) = Ief[U(~-~+~)2rl-4.i+~~+~~,i+~] 

c 
(4) 

where 01 and y are positive parameters that favour the 
smoothing or preservation of the discontinuities. 
Applying minimum variance estimations Geiger & Girosi 
[l] obtained the following mean-field equation for the line 
process: 

Li’i+‘= l+e~~[~~y-~(I;-4+I~21] 
(5) 

The mean field equation for the field F depends on noise 
parameters and it was obtained by introducing a gradient 
descent algorithm [ 11. 

2.3 Conditional morphological basic operators 
In this paper we modify the statistical morphological 
model introduced by Yuille et a1.[3] by taking into 
account the discontinuities L; it can be performed by 
introducing a term representing the a priori knowledge 
about discontinuitics in statistical morphology models. 
In statistical morphology [3] the value 4 depended on the 
intensity values of pixels j falling inside Bi, that is the SE 

centred on pixel i, and on parameter B (eq. (2)); in the 
proposed approach it also takes into account the 
discontinuities between pixel i and neighbour pixels 
(pixels r and m in Fig.2). Since this dependence is 



modelled by means of a set of conditional probabilities, 
the approach is defined as conditional morphology. 
The basic conditional morphological operation, erosion 
and dilation, are obtained by following the same 
technique presented in [3]: the possible solution for 4 is 
selected among the pixels of B;. This concept is 

formalized by introducing binary decision unit Vi,j ,as in 

statistical morphology, and a conditional probability 
P( F, h, v / I). According to Bayes Theorem, we can write: 

where yJ represents a possible solution configuration and 

P [ 1 yJ /I is the same of eq. (1). 

The dependence of solution from the discontinuities is 

contained in P 
[ 
4, hi,m, Vi,r /yJ, I ; in particular for each 1 

site j E Bi, we evaluate the interaction among lj (possible 

solution) and all possible solutions for Fr and F,. The 

Fr and F, values are chosen in two new neighbourhood 

sets R, and M,, that have the same shape of Bi, but 

they are centred, respectively, in r and m. 
By considering the same approach of [4] it is possible to 
write: 

(7) 

hi,rn = (11) 

where cj,d = e@d . eP[Y-a(“-‘d )*I + 1 

1 

with d={ k or p} . 

Eqs. (9), (lo), (11) represent the outputs of conditional 
dilation if B>O. By considering negative B values, they 
represent the outputs for conditional erosion. 

3. COEFFICIENT ANALYSIS 

In this section an analysis of the behaviour of the weights 
in (7) is performed to evaluate the influence of the line 
process on morphological operators. 

= pixels of i-th SE 

= pixels of r-th SE 

Fig.3 

with 

with I, E B, and I, E B,. 

It is possible to notice that weights depend on the values 
falling inside SEs centred on pixels i, p and m. 
By applying the same method we can derive the solutions 
for Vi,r and hi,m: 

Conditional dilation is here considered by using the 
model represented in Fig.3. 
The behaviour of the conditional morphological operators 
strongly depends on the parameter p. Two special cases 
are considered: B+ 0 and B+ 00. 

Conditional dilation behaves as a linear average, in fact 
the weights wj assume the same value V j E Bi . 

-p+- 
From eqs. (8) and (9), it is possible to notice that the 
output 4 assumes the value of the winner pixel j E Bi 

such that wj is maximized. The winner selection depends 

on the pixel conliguration that is presented in input; more 
precisely the selection depends on the pixel values in 
Bi, Br and B,,, and their interactions (i.e. their gradients). 
By defining 

(Ij - II, j2 = AIjp and (lj - Ik j2 = Njk 

it is possible to individuate the following situations for 
analyzing the behaviour of conditional morphology. 
. High discontinuity between pixels j and r and between 

pixels j and m 



Y 
Njp 7 

VjeBi,VpEBr,VkEBm 

In this case, the behaviour of the weights is the following: 

C C exP[ PC ‘j + lp + Ik ,] 

wi p+ ’ 
PEB, keB,,, 

c c c exP[Pffj+lp+lk)] 
(12) 

jd$ PEB, ksB,,, 

AS Ij >> Ip and Ij >> I,, it iS possible t0 write: 

Wj + 
exp(Plj) 

CeXPWj) 
jEBi 

This means that if p assumes high values, a statistical 
morphological dilation is performed and if p+ 00 a 
classical dialtion is performed. 
. Law discontinuity between pixels j and r and between 

pixels j and m 

Y 
&jp Y 

In this case, the analyzed pixels fall within a uniform 
region. The behaviour of the weight is described by means 
of the following expression: 

c ,JBCIj+Ip+Ikl] ,J2Y-‘MAIjp+Njkl] 

(13) 

From eq. (13), it is possible to observe that the conditional 
morphological operator behaves as a statistical dilation if: 
~jp~AIjk~oOrIj+Ip+Ik+a(~jp+Aljk)>>2y. 

l Presence of an outlier in Bi 

IJ>>lj VjEBi 

Within this situation, it is possible to individuate two 
particular configurations: presence of a uniform region 
with an outlier in Bi or presence of an outlier in Bi 

homogeneous with pixels in BP and Bk . 

The first case is described by means of the following 
conditions: 

Njp..$. Njk<<: Vj#j*,jEBi,VpEB,,QkEB,,, 

Y Y l$k > -&, Ali;: > a j= j*c Bi,VpE B,.,VkE B,,, 

The weights assume the following values: 

* peB, kEB,,, 

wi Pjrn ’ c ,Ptrjl 

jEBi 
c Ccjpk 

PEB, kEB,,, 

(14) 

From eqs. (14), (15) it is possible to notice that j* is 
solution for pixel i if 

This expression means that a high y value is necessary to 

cancel the outlier j*. 
The second case is described by means of the following 
condition: 

J 

Nj* ><r* ’ Njk>’ Vj#j*,jEBi,VpEB,.,VkEB,,, 

1 
a 

Y Y A$ .+$A!;k i<-& j = j* E Bi,Vp E Br,Vk E B,,, 

There are edges between pixels i and r and between pixels 
i and m, but there is an outlier in j E Bi . 

By following the same approximation used before, it is 

possible to obtain eq. (15) for wj and eq. (14) for wi; in 

this case, j* is solution for pixel i if 

This means that it is easy that j* is the winner because it 

receives a contribution from the parameter y, 

4. EXPERIMENTAL RESULTS 

Experimental results aim at showing that conditional 
morphology provides better results than statistical 
morphology and it presents a good adaptability to real 
images. 
To test the proposed operators, a sequence of conditional 
openings (conditional erosion followed by conditional 
dilation) is applied to SAR (Synthetic Aperture Radar) 
images which are corrupted by an impulsive 
multiplicative noise called “speckle noise”. According to 
the simulated annealing [l], at each iteration a higher 
p value is selected and the output obtained at the previous 
step is processed. 
The final structure of the proposed conditional operator, is 
shown in Fig. 3. 



Input image 

Fig.3: Structure of conditional operator 
The following experiment are performed by using a 
synthetic SAR image (Fig.4) corrupted by a simulated 2- 
look speckle noise: 
l conditional openings (11 iterations, p=O.2, 0.8, 3.2, 

12.8, 19.2, 25.8,51.2,64.8, 82.4, 104.2, 204.8); 
. statistical opening [3], p=104.2; in this case edge were 

extracted by means of a Sobel operator. 
Results are shown in Table 1; it is possible to notice that 
the better results are obtained both in filtering and edge 
detection by using the conditional operator. 
In Fig. 5 the results obtained applying the conditional 
opening to real SAR. image are showed. 
Analysing Fig. 5 it is possible to notice that the use of 
coupled probabilistic model in presence of lower noise 
(4-look noise) improves the result quality. In particular a 
very good result is obtained in edge detection where the 
edges are extracted with a particular accuracy (the road in 
Fig.Sc) 
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Corrupted 

Lackof Surplus SNR Noise 
edge of edge variance 
points points 

7.82 31.4 
Image 
Statistical 0.49 33.87 4.0 48.20 
Morphology [3] 
Conditional 4.58 3.07 11.66 20.44 

1 Morphology I 
Table 1: Result of experiments 

(a) (cl 
Fig.4: a) Synthetic SAR image; b) Synthetic image corrupted by 
simulated 2-look speckle noise 

a) b) c> 
Fig. 5: a) SAR image p = 104.2 b) Result from iterative 
conditional openings with 6 iterations of p (p = 0.8, 3.2, 12.8, 
51.2, 104.2, 204.8) c ) Edge image obtained using the same 
steps of case b. 


