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ABSTRACT 

This paper addresses the problem of time-varying (TV) 
nonlinear system identification. We focus on a class of 
(almost) periodically TV Volterra series. Such a model is 
shown t,o well describe mobile satellite channels which are 
structured as a time-invariant 
TIV zero-memoryless nonlinearity 
ear filter. The nonlinearity distortion is due’to the on-board 
satellite amplifier. The TV filter characterizes fading multi- 
path in mobile environment. A least squares estimat.e of the 
TV Volterra kernels with finite memory is first derived for 
anv arbitrarv channel inout. Then. closed form solutions of 
th;! Volterr; kernels are-derived f&r symmetrically circular 
input sequences. The t.heoretical results are illustrated by 
simulations. 

I INTRODUCTION 

Volterra filter is an attractive nonlinear system representa- 
t,ion for two reasons: i) it is a straightforward generalization 
of the linear system modelling; ii) the parameters to identify 
are linearly related to the output. Many physical systems 
are shown to be well modeled by Volterra filters [ 111. Time- 
invariant. (TIV) Volterra filter has been intensively studied 
in the literature (e.g. [6][11]). A little attention has been 
paid to the more general case of time-varying (TV) Volterra 
filters. 

This paper focuses on (almost) periodically TV Volterra 
syst.ems, which are characterized by kernels changing with 
time according to one or multiple periodicities. Such sys- 
tems are encountered in many applications including ro- 
tating machinerv and mobile communication svstems. The 
present. work concentrates on the second application. Pe- 
riodicallv TV Volterra svstems are shown to well describe 
mobile satellite channels*(principal component of the third- 
generat,ion of mobile communication 131). 

Mobile satellite syst.ems are a solution to many t,echnical 
and economical oroblems 131. In this context,. satellite Uni- 
versal Mobile T~lecommu~idations Systems (UMTS) chan- 
nel is conceived as a multi-application digital mobile system 
incorporating terrestrial andsatellite Gmponents. One of 
the obiect.ives of the Eurovean Advanced Communication 
Tech&&es and Services (ACTS) project. is the modelling 
and equalizat,ion of UMTS channels. 

In satellite C’MTS channels, three problems occur: 
il Because of t.he limited availabilitv of band-width. the 
t;ansmi t ted signal is severely band-l&ted in order to Allow 
higher inform&on bit rate.- Such a filtering causes signifi- 
cant intchrsvmbole interference (ISI). 
ii) Nonlin& clistort,ions are iauied by on-board ampli- 
fiers such as Travclling Wave Tube (TWT) and Solid State 
Power (SSP) Amplifiers. Such amplifier devices, used for 
high speed data transmission, introduce nonlinearity be- 
cause they usually work near saturation. 

iii) Multipath fading is caused by rapid changes of the mul- 
t.ipath environment in the earth station to mobile link. 
The presence of these distortions leads to a TV nonlinear 
channel with memory. Thus, for equalization and receiver 
design, it is important to derive an adequate model for the 
underlying fading non linear channel. 

Modeling and equalization of fixed band-limibed sat&l- 
lite channels have been intensively st,udied in the last two 
decades. For instance, a Volterra approach has been pro- 
posed in [ 1, 21; another approach, based on neural net.works, 
has been recently proposed in [5]. 

The problem of multipath fading is one of the major prac- 
tical concern in wireless communicat.ions. In mobile envi- 
ronment, the multipath is mainly due to the surrounding 
(e.g. buildings) to the mobile unit. Deterministic as well as 
stochastic approaches have been proposed to characterize 
fading multipath linear channels (e.g. [lo, 121). 

This paper considers a class of TV nonlinear channels 
structured as a TIV filter cascaded with a TIV zero- 
memoryless nonlinearity (ZMNL) and a TV multipabh 
channel. Approximating the ZMNL by a finite-order poly- 
nomial, the TV nonlinear channel is shown to be a TV 
Volterra system. We derive a Least Squares (LS) estimate 
of the TV Volterra kernels. The LS method does not need 
particular statistical assumptions on the input, signal except 
certain persistence-of excitation properties. However, the 
method needs the Volterra kernels to be of finite memory. 
This restriction is relaxed using circularly symmetric i.i.d. 
input sequences. Such inputs make the Volterra kernels or- 
thogonal to each other. We therefore derive closed-form 
solutions of the TV Volterra kernels. 

II CHANNEL MODEL 

A mobile satel1it.e channel consists of a cascade of a classical 
satellite channel: describing the satellite to earth basesta- 
tion links, and a fading multi 
earth statlon to mobile link P 

ath channel, describing the 
[3 In this section, we provide 

a Volterra series-based model to describe the input-output. 
relationship of the simplified mobile satellite channel given 
in figure 1. 

Let {a(k)} be the information symbol sequence. The 
complex envelope of a linear modulat.ion of {a(k)} may be 
expressed as 

co 

z(t) = C a(k)p(t - kT) (1) 
k=--oc 

where p(t) is the impulse response of the pulse-shaping fil- 
ter, T is the data rate. 

The modulator out,put is filtered by a band-limit,ed TN 
linear filter. Let {h(t)} denote its impulse response. The 



transmitted signal can then be written as 

s(t) = Re 

im 
c 

a(k)g(t - kT)ejurt g Re { sb(t)ejYCt} 

k=--oc I 

(2) 
where 

g(t) = p(t) * h(t) 

and * denotes convolution. 
The nonlinear satellite transponder, which operates at 

or near saturation, is represented by a ZMNL. The non- 
linearity is characterized by amplitude distortion (AM/AM 
conversion) and phase distortion (AM/PM conversion) [l]. 
The transponder output can then be written as (using the 
amplitude and phase representation s*(t) = R(t)ej‘+‘(“)) 

d(t) = Re { f(s,(t))ej”“” } g Re {db(t)ejWcL} (3) 

where f is a complex ZMNL. In the sequel, the ZMNL is 
modeled by an I-th order polynomial, i.e. 

dh(t) = &s;(t) (4) 
i=l 

where the Q~‘S are complex coefficients. Thus, the bawband 
complex envelope of t.he transponder output is 

dh(t) = kcti 2 a(k)g(t - kT) 

iz* k=--m I‘ (5) 

which can be rewrit.ten as 

db(t) = k,i 2 (6) 
i=l k, ,...ki=--m 

We assume that the bandwidth of the down link fil- 
ter is large enough to neglect its distort.ion effects on the 
transponder output. For simplicity, the same notation w, is 
used for the different carrier frequencies used in the channel. 

The multipath fading is usually described as a TV tapped 
d&lay line. The time variations are often modeled by a 
stochastic process [lo . However, for mobile radio channels, 
it has been shown t h at 
periodic (e.g. [12 ). 

the time variations are (almost) 

Let L denote t b e number of delayed versions of d(t) col- 
lected at the receiver. The noiseless received signal is 

L 

r(t) = &(t)d(t - n(t)) 
1=1 

where pi(t) and 7r t) are the attenuation factor and the 
propagation delay ! 
(7), we obtain 

or t.he Ith pat,h. Substituting (6) into 

r(t) = Re {rb(t)ejwct} 

where r*(t) is the complex envelope. After sampling, the 
noisy received discrete-time complex envelope is found to 
be 

I (9) y(n) = ha% 
k ,.g (!liCkr)) i=I ,, ” 

pl,ejwrs’71 fig([n - k,]T - n,,) + v(n) 

where v(n) is an additive noise including the down-link 
noise and other disturbances. The complex envelope can 
be rewritten as 

i=l kl,..,k,=-co ,=I r=1 

As in [12], we assume that the T~,,‘s change linearly with 
time, i.e. 71,, = Xln+XP (which implies that the mobile unit 
ha5 constant velocity). The time variations of the channel 
are mainly due to the term ejwrrr~~. Thus, the time varia- 
tions of the other terms are neglected in the sequel. Under 
these assumptions, we obtain 

where & = (kl, . . . . k;), and 

t 

ei,l(ki) = ai Ptrre 
CA; 

rI 
g(kv-T - q,) 

I 

(13) 
r=l 

The frequency w[ = w,Xl, is known as the Doppler fr& 
quency associated with the lth path. As mentioned before, 
the variations of the parameters tii,l(&) w.r.t. n are small 
compared to that of the exponential ej“[“. The Bi,l(&)‘s 
are assumed complex constants in the following. 

The input-output relationship (11) belongs to the class 
of TV Volterra filtering with factorizable kernels. It is also 
worth noting that the fading multipath channel model (11) 
is an extension of the linear model proposed in [12] to non- 
linear channels. 

III LS ESTIMATION OF VOLTERRA 
KERNELS 

In this section, we assume that the kernels hi(n;&) have 
finite memory length, say Q. The discrete-time received 
signal is then 

I 0 

y(n) = 1 C hi(n;&) na(n- 

171 k, ,..., k,=O r=l 

Also, assume that the input sequence 

k,) +u(n) (14) 

satisfies certain 
Such conditions . . persistence-of-excitation conditions [S]. 

guarantee unique determination of the Volterra kernels. 
The Volterra kernels can be assumed symmetric without 

loss of generality, i.e. hi(n;&,) is left unchanged for all the 
i! permut.at,ions of the indices, kl, . . . . k;. Thus, the non- 
redundant regions of the Volterra kernels are 

f;={&\O<kl <...<ki<q}, i=l,..., I . 

Let P(k) denote the number of distinguishable permuta- 
tions of (k,! .., ki), which can be expressed as 

‘(lci) = nL=, (~~=~ 6(k, - kj)) 
(15) 

I=1 r=l 



For example, P(k) = i! when kl # . . . # ki. and P&) = 1 
when kl = . = ki. 

The signal model (14) can be rewritten as 

y(n) = 2 C hi(n;&)P(&) fi a(n - k,) + u(n) 

i=l kiE/ i \r=l / 

(16) 
Let us define the following notations 

ei(&) g [ei,l(&), ..,Qi,L(&)] 

8i ’ [Bi(O,..,O),Bi(O,..,q),...,Bi(q-l,q,...,q), 
@i(47 Qv ...7 q)] 

e A [el,...,eflT 
w P [WI, . . ..WL] 

T 

and 

Ui(n;&) g P&i) n a(n - k) 
r=l 

ai k [ai(n;O ,.., 0) ,..., ai(n;q 

ai(n;q,q,...,q)l 

a(n) g [al(n), . . . . w(n)] 

r#(w; n) A [ejwln, . . ..ejwLnlT 

- L!?,...94, 

The signal model (14) can then be expressed as 

y(n) = 2 1 hsi(n;&)P(&) fia(n - k,) + v(n) 
i=l &E/ \r=l / 

(17) 
which can be rewritten as 

y(n) = (a(n) 63 +(w; n)) 0 + 44 (18) 

where @ denotes the Kronecker product operator. 
Collecting N measurements y = (y(O), . . ..y(N - l))T of 

the received signal yields the following matrix formulation 

y=A(w)B+v (19) 

where 

40) 8 4(w; 0 

A(w) = 
41) 8 4(w; 1 

a(N - 1) @I ‘&w; N - 1) 1 
and v = (u(O), . ..?v(fV - l))T. The parameter vectors to 
estimate are then 8 and w. 

Assuming that the additive noise is white, the LS esti- 
mates of 0 and w are given by 

(ii, G) =arg min Jl(y; 0, w) (20) 
e,w 

where 

Jl(Yi 8, w) = (Y - A(w)V (Y - A(w)@) (21) 

If the Doppler frequency vector w is known, the LS estimate 
of 8 is given by 

g = (A(w)“A(w))+ Add (22) 

where + stands for the pseudoinverse. In practice, w is un- 
known. Substituting (22) into (21), we have now to mini- 
mize the following criterion 

J(Y;w) = YH(I - pA(W))Y 

where PA(W) is the projection matrix on the signal subspace 
(if w is the true Doppler frequency vector) 

PA(W) = NW) (AWHW)+ AWH (24) 

Since Jl(y; w) is nonlinear w.r.t. w, we cannot, derive an 
analytical solution for the Doppler frequencies. Thus, we 
resort to numerical optimization techniques, e.g. 

;;(i+l) = ;,(i) 
- PVW J(Yi w) 

To ensure rapid convergence of the algorithm, we need an 
-CO) initialization w of the Doppler frequencies. The next sec- 

tion can be used for this matter. The next. section also de- 
rives closed form solutions of the Volterra kernels when the 
input is a circular Gaussian independent sequence. 

IV VOLTERRA IDENTIFICATION FOR 
CIRCULARLY SYMMETRIC INPUTS 

In the previous section, apart from the persistence-of- 
excitation property, we made no additional statistical as- 
sumption on the input sequence. However, the Volterra 
kernels were assumed to have finite memory lengths. This 
condition can be relaxed if special inputs are used in the 
identification procedure. We then reconsider the Volterra 
system in (11). The non-redundant regions of the Volterra 
kernels are redefined as 

fi = {Ci ( - 03 5 kl 5 . 5 ki < CO}, i= l>...,I 

The idea motivating the use of special inputs is to make 
the Volterra kernels orthogonal. Real stationary Gaussian 
input has been used in [7]. In this, case, the solutions are 
rather complicated except for second-order Volterra sys- 
tems. An ahernative solution using cyclostationary inputs 
has been proposed in [4]. Volterra system identification us- 
ing PSK sequences as input has been considered in [13]. 
In this paper, we show that closed form solutions can be 
obtained for any circularly symmetric independent, input 
sequences. 

Let a be a complex random variable and let p and 4 
denote its modulus and its phase (modulo 2x). a is said 
circular if for any p, a and aexp(jp) have the same distri- 
bution [9]. This implies that p and 4 are independent and 
that $J is uniformly distributed over [0,27r). In the Gaussian 
case, c has a Rayleigh distribution. Let the input sequence 
{a(n)} be formed by independent realizations of a. 

Let z, = (71r...,7r)r 1 5 r 5 I. Consider the cross- 
correlation between the out,put y(n) and conjugated and 
lagged copies of the input a(n): 

m,,a...a(n;2;,) &+ E 
{ 

y(n) fiu*(n -TV) (26) 
SZl 1 

where L = (~1, . . . . TV), ~1 5 2 T,., 1 5 T 5 I. Rewritting 
(11) as in (14), we obtain 



where 

The circular symmetry implies the following property [9] 

ma...&;1,) = 0 (28) 

when i # I-. This ensures the orthogonality of Volterra 
kernels having different order of nonlinearity. Thus, we can 
estimate separately the linear kernel, the quadratic kernel, 
the cubic kernels and so on. We can then drop cf=, in 
(27) and obtain the following equations 

m,,...,(n;~) = 1 hi(n;~)P(~)ma...a(~~;Zi) (29) 

&El I 

The 2ith moment m,..,,(&;zi) can be writ-ten as 

rn,...&;~J = E f&(n - ks)p(n - 7s) (30) 
a=1 

Using t.he independence of the modulus and the phase of 
circular random variables, we obtain 

ma...a(&i;Li) = E fi p(n - k,)p(n - 78) (31) 
a=1 

expjk(0(n-k.)-$(n-T#)) 
a=1 

Note that the vectors & and 2 are such that kl 5 kz 5 
. . . 5 k, and ‘~1 5 72 5 . . . 5 pi. Moreover, the 4(n)‘s are 
independent and E {expj4(n)} = 0. This yields 

m,...o&;~) = 0 if& # 2 

We can then drop C%EF i in (29): 

77+...~(n;&) = hi(n;&)P&)%a...a&;$) 

Thus, we infer the following closed form solutions 

mya...a(n;L) 
hi(n;a = P(~)m,...,(~;k&) ’ ki E fi 

where i = 1, . . . . I and 

,.&;&)=E f-Ja(n- 
i 

WI2 
SZl 1 

For Gaussian circular inputs, we obtain 

(32) 

(33) 

(34) 

(35) 

where a2 denotes the variance of a(n). Thus, in this case, 
the Volterra kernels are given by 

hi(n,;k&) = 
mya...a(n;kJ 

i! ~2i ’ &EEf,,ill (36) 

The Volterra kernel estimates are derived by replacing 
the theoretical moments m.ya...o(n;&i) by their estimates 
iSvo...a(n;&) in (34): 

k, E Fi, i 2 1 (37) 

If the Volterra kernels are TN i.e. mya...a(n;le,) = 
mya...a(k.)r consistent estimate can be obtained from a sin- 
gle record of input-output data: 

N-l 

+&~a(&) = $ c y(n,) ha*(n - k,) 
VI=0 s=l 

(38) 

For the (almost) periodically TV Volterra system (ll), 
we consider the following cyclic cross-correlations 

According to (12), we get 

Myo...o(X;~) = P&~)mcZ...rX(&i;ki) ~ei.l($)s(x-wI) 

l=l 

(40) 
Thus, the statistic IM,,...,(X;&)( peaks at the Doppler fre- 
quencies WI, 1 = 1: . ..L. provided 8,~ (&) # 0. This also 
allows the determination of L, the number of paths. Once 
the WI’S are retrieved, the ei,l(&) can be obtained as ’ 

lcl,,...,(wI;cCi) 
eiJ(ki) = P(~)m,,,.,(~;~,) (41) 

From a single record of input-output data, the cyclic 
statistic ~c&...~(X; $) can be consistently estimated by 

N-l 

i&,.,(~;&) = k c y(n) fia*(n - h-)e-jXn (42) 
n=O r=l 

A consistent estimation of the Volterra kernels is t,hen ob- 
tained as 

where the estimate GJ~‘s arezbtained using the peak picking 
technique on the statistic M,,...,(.; .). 

where m,o...a(Qi; a) is the Pith order absolute moment of 

{a(n)): 

m,...,@i;&) k E { la(n)12’} 

= i! a2i 



V SIMULATION R.ESULTS 

In this paper, we present simulations for the LS estimation developed in section III. Detailed study of the method proposed in 
section IV will be presented elsewhere. However, the initialization of the Dopller frequencies in the LS algorithm is provided 
using the cyclic cross correlations developed in section IV. 

Consider a linear-quadratic Volterra system. The input sequence is Gaussian circular and white. The ZMNL coefficients 
are (~1 = 1 and (~2 = 0.5 + 0.2i. We consider a multipath environment composed by a direct path i.e. WI = 0, and a reflected 
path with Doppler frequency w2 = 2x x 0.05. The system memory is set to q = 10. The signal-to-noise ratio is SNR = 10dB. 

Figure 2 represents the average of the second-order cyclic cross correlations over k1 = 0, . . . . q from a single record of input- 
output data of length N = 128. The MSEs of the linear and quadratic kernels LS estimates are computed using Monte-Carlo 
experiments. Figure 3 displays the averages of the relative MSEs of the linear and quadratic kernel estimations. 

VI CONCLUSIONS 

This paper addressed (almost) periodically TV Volterra systems. Such systems are shown to well describe mobile satellite 
channels. We first derived a least squares estimate of the TV Volterra kernels. Then, we focused on circularly symmetric 
inputs. Circularity and independence of the input sequence make the Volterra kernels orthogonal to each other. We therefore 
derived closed-form solutions for the TV Volterra kernels. 
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Fig. 2. Initial Estimation of the Doppler frequencies. N = 128 Fig. 3. MSE on the LS estimation. N = 128. 


