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ABSTRACT 

A combination filter structure involving wavelet transform 
based denoising methods and K-nearest neighbor (I<-NN) 
type operations is proposed and studied. Performance anal- 
ysis of this filter shows its high efficiency in suppressing 
mixed white Gaussian and impulsive noises. At the same 
time the proposed filter possess moderate computational 
complexity. 

1. INTRODUCTION 

The most widely used methods of image restoration in the 
presence of impulsive type noises are based on rankings of 
the pixels in neighborhood according to brightness. Spa- 
tial nonlinear filters (see, [l, 5, 6, lo]), preserve the image 
sharpness and remove efficiently certain kinds of impulsive 
noise, like “shot” noise (when individual pixels corrupted 
or missing from image). 

Among such techniques note the K nearest neighbor 
(K-NN) filter introduced by Davis and Rosenfeld [5]. This 
filter performs well for both cases of additive and multiplica- 
tive noise [8]. However, an application of the I<-NN filter 
was restricted due to its main drawback - very high com- 
putational time. A modification of the K-NN filter with 
much lower (of about 20 times less) complexity has been 
suigested in [9]. In [z] another modification of the I<-NN 
filter has been proposed which for even slightly corrupted 
images gives practically the same output as the I<-NN fil- 
ter does, but is even simpler in implementation compared 
to the modification of [9]. An efficient bit-serial implemen- 
tation of this modified K-NN filter is developed in [2]. 

On the other hand, for removing additive white Gaus- 
sian noise from signals and images, wavelet transform based 
denoising methods have been proven to perform excellent 
[4]. They work pretty well also in several applications where 
the error is neither white nor Gaussian [ll]. These applica- 
tions are noise reduction (de-noising) of synthetic aperture 
radar (SAR) signals, medical and geophysical signals, as 
well as removing blocking artifacts in images of JPEG de- 
coded signals [ll]. However, the Donoho’s method (wavelet- 
based) for noise reduction is not working in the case when 
image is corrupted by even a small percentage of impulses. 
It comes natural to incorporate positive sides of wavelet de- 
noising methods and I<-NN type filtering operations in a 
unified filtering structure for removing mixed type noises. 

In this paper we propose a novel filter structure based 
on the superposition of a modified I<-NN filter and the 

discrete wavelet transform based filter. The combined filter 
performs well in suppressing mixed impulsive and Gaussian 
noises. At the same time the proposed filter can be imple- 
mented with moderate computational complexity. 

2. THE FILTER STRUCTURE 

In general, the filter structure we study in this paper is 
formed as the superposition of an impulse removal filter G 
and a wavelet transform based filter F: 

Y = F(GW), (1) 

where X = {z(i,j), i = 1,2,. . , I,j = 1,2,. . . , J}, z(i,j) E 

{O, 1, . . . . R - 1): R = 2’, is an observation of an image 
U = (~(i, j), i = 1,2,. . . ,I, j = 1,2,. . . , J} corrupted by 
a mixed white Gaussian and an impulsive noise, and Y = 
{y(i, j),i = 1,2.. . . , I, j = 1,2,. . . ,5}, is the output of the 
filter which tends to estimate the image U. 

2.1. The wavclet denoising method 

As the filter F in (1) consider the noise reduction (denois- 
ing) method by nonlinear thresholding in the wavelet do- 
main proposed by Donoho and Johnstone [4]. This method 
consists of the following three steps (we consider hcrc the l- 
D case; in the case of 2-D separable transform the image is 
first transformed row-by-row and then column-by-column): 

1. Transform the noisy data into an orthogonal domain, 

z=wx (4 

2. Apply thresholding to the resulting coefficients, which 
will result in suppression of the coefficients of lower energy, 
using so-called hard thresholding or soft thresholding: 

2 = Tj&(z, t) = 1 z: 14 2 t, 
0, I4 < t 

T,(z,t) = 1, sgn(z)(lzl - 2 = th I4 2 t, o IZI < t. (4) 

3. Transform back t.o the original domain, performing 
the inverse transform: 

y = w-l%. (5) 

However, applying this classical wavelet de-noising scheme 
in practice, one may end up with some artifacts near singu- 
larities (the pseudo-Gibbs phenomena in the neighbourhood 
of discontinuities). One way to overcome this problem is to 



use undecimated (or shift-invariant) wavelet transforms [4], 
which can be done according to the following simple strat- 
egy: wavelet de-noising is applied for all circular shifts of a 
signal, each of the particular result of de-noising is unshift, 
and, finally, the average of all these results is obtained [4]. 

Donoho has shown that soft thresholding is the I2 opti- 
mal, and the resulting error is within a logarithmic factor of 
the ideal risk (which is a measure of performance of an ideal 
scheme). Hard thresholding, however, does not guarantee 
the smoothness property but have better 12 performance in- 
stead, especially for shift-invariant wavelet transform-based 
schemes. As an alternative to these two different threshold- 
ing strategies we will use middle case, by applying semi-hard 
“staircase” thresholding given by 

where Th (Y, tt ) are hard threshold operators defined by (3). 
A proper selection of thresholds t, is quite important. 

There are many different ways to do that. Donoho gives 
a “universal threshold” [4]. As a value for t the Donoho’s 

threshold is t = odm, where n is the length of the 
signal x, x = u+an, u is the corresponding noiseless signal, 
and n is an additive Gaussian white noise. In general, t; 
can be selected as ti = cio, where ci are some constants. 

2.2. The impulse removal filter 

Specific to the filter structure of (1) is that the impulse 
removal !ilter G should not destroy frequencies in the im- 
age which is essential for the second stage, in the wavelet 
de-noising’ . Th’ IS means that while removing impulses the 
filter should not change image pixels where no impulse has 
caused. Such a filter G would not blur edges which can- 
not be reconstructed at the second stage. Thus, it is de- 
sirable to apply such an impulse removal filter at the first 
stage that process image pixels with different filtering ac- 
tions depending on the probability of appearing impulses in 
the neighbourhood of the given pixel. This kind a strategy 
is used in state-conditioned filters in contrast to the case 
of conventional rank-order based filters [l, 71 where every 
pixel is processed uniformly. 

In state-conditioned techniques the filtering procedure 
is conditioned on the current state of the algorithm [l, 61. 
The output of the filter is defined as: 

y(i,j) = 2 crk,s(,,j)uk(i,j), i = 1, . . . . I, j = 1, . . . . J (7) 
k=l 

where uk(i,j), k = 1, ,,., I<, are different estimates of the 
image pixel u(i, j), s(i, j) E (1, . . ..S} is a state variable 
that classifies the current pixel to one of the S categories, 
and (Yk,s(i,,) are the scalar coefficients corresponding to each 
category. For example, the ROM filter proposed in [l] uses 
ul(i, j) = z(i, j) and uz(i, j) = ROM(i, j) as the estimates, 

1 Otherwise, a problem of finding G which transfers the image 
in a form more suitable to wavelet denoising rather than the 
given observation after removing impulses could be considered. 
However this is a very complicated task. 

Figure 1: The general structure of the impulse removal filter 

where ROM(i, j) is the rank-ordered mean (the average 
of the fourth and fifth order statistics within t.he (3 x 3) 
window excluding the central pixel). 

The minimum-maximum exclusive mean (MMEM) fil- 
ter recently introduced in [6] uses four different estimates: 

ul(i, j) = z-(i, j), u2(i, j) = mean(U(3)(i,j)), m(i, j) = 
mean(Ut5)(i, j)) , and ud(i, j) = mean(Y(i-1, j*l),Y(i- 
l,j), Y(i: j - l)), where b +)(i: j): p = 3,5, is a set of pixel 
values which is formed by removing some pixels from the 
(p x p)-window VCp)(i, j) centcrcd at z(i, j) according to 
a strategy based on computation of minimums and max- 
imums over V(“)(i, j). A comparative study of this filter 
with other existed filters [6] has demonstrated sufficiently 
high performance in removing impulsive noises from highly 
corrupted images. However, its performance becomes rela- 
tively worse for images corrupted with small percentage of 
impulses which is often the case in real applications. 

The general structure of the filter which we propose to 
incorporate into the combination structure of (1) is pre- 
sented in Figure 1. For every pixel z(i, j), i = 1, . . . . I, j = 

1 , . . . . J, its neighborhood within the (pxp) window Vcp)(i, j) 
is analysed. An impulse detector is used to find the posi- 
tions of impulses within @)(i, j). Different techniques can 
be used for this purpose [l, 61. (Note that in application 
to restoration of images with missing samples there is no 
need for impulse detector since positions of missing sam- 
ples are known.) If the pixel z(i, j) is not recognized as an 
impulse then no filtering action is applied and the output 
of the filter is the input pixel z(i, j) itself. Otherwise, the 
output of the filber is obtained as the result of an operation 
A applied to the set U(p)(i, j). This set is obtained from the 
window Vtp) (i, j) by discarding some of the pixels accord- 
ing to the mask set obtained by the impulse detector. (Note 
that assuming positions of impulses are ideally detected (as 

in the case of missing samples) the set Crcp) (i, j) will not 
contain impulses.) However, if there is no sufficient. number 

of pixels in the set Ucp) (i, j) a causal predictor (linear or 
nonlinear) is used instead of the operation A. The dashed 
line in Figure 1 indicates that the filtering operation A can 
be incorporated in the impulse detector. 

Thus, the actual filtering action in the proposed struc- 
ture of the impulse removal filter of Figure 1 is performed 
in the block A. Below we describe a modified K-nearest 
neighbor type operation which we use as the basic opera- 
tion of the block A in our experiments. We call the resulting 
filter G the selective K-NN filter. 

Let U(p)(i, j) = {z(l), x(2), . . . , c(M)}, when the filter’s 



window is located at the pixel z(i,j), i = 1, . . . . I, j = 
1, . . . . J, and let two integers I< = [6M] (M = ]CJ],O < d 5 1) 
and I’ E (0, . . . . R - 1) be given. Some possible chaises for 
zc are e.g. the center pixel z(i, j) within the window Vcp), 
the median within Vcp), the averave of selected samples 
within Vcp), etc. Consider the set D = D(i,j) = {d(m) = 
Ix(m) - xcl,m = 1,2,. . . , M} and let d(J,-) be the I<-th 
order statistic (the K-th smallest value) within D. The 
result of the modified K-NN type operation is defined as: 

y = A(U(‘)) = c f(m) -’ 5 f(m)z(m), [ 1 (8) 
m=l m=l 

f(m) = { 1 if d(m) 5 d(K) , 
0 otherwise 

m = 1,2, . . ., M. (9) 

In the partricular case where U(P)(i, j) = V(P)(i, j) (no 
pixel is discarded) and 6 = 1 this becomes simple averaging 
procedure. In another case where Utp) (i, j) = 
V(p)(i,j)\{z(i,j)} and E= = x(&j) the modified K-NN 
operation of (8) performs very similar to the operation of 
the classical K-NN filter, especially in the presence of a 
noise [2]. However, while the latter one is computationally 
very complicated, the former one allows a simple bit-serial 
implementation which we summarize in the next subsection. 

2.3. Implementation of the modified K-NN 
type operation 

Finding the mask set f(m), m = 1,2, . . . . M is the most 
complicated part in implementation of the modified K-NN 
type filtering operation. In a straightforward implementa- 
tion the mask set could be found by finding the K-th order 
statistic in the set D and then using M additional com- 
parisons. This is unefficient, especially because the sliding 
window designs for computation of order statistics cannot 
be utilized. We show that a binary-tree search technique 
resulting in an efficient bit-serial implementation of this fil- 
ter can be applied. In our implementation we find the mask 
set f,,, without finding the value of the I<-th order statistic 
in D. The proposed binary-tree search algorithm for com- 
putation of the output of the modified K-NN filter over a 
fixed window can be summarized as follows. 

Algorithm 1. 

Input. A set U = {z(l),s(2), . . . ,c(M)} and an integer 
xc, x(m),x’ E {O,l,. . . ,2’ - 1). 

Output. Y’ = [Cz=, fm]-’ [C,“=, fdm)], where f(m) 
are defined by (9). 
Computation (pseudocode). 
Step 1. 

Form= 1,2,..., M set d(m) = ]z(m) - E’(. 
Step 2. 

Form=1,2 ,..., Mset f,,,=l. 
Step 3. 

Set T = 2’-’ /* Note that the numbers of bits in d(m) 
and z(m) are the same, r */. 
Step 4. 
For s = 1,2,. . . , r do 

Figure 2: The bit-serial architecture for the modified 
K-NN type operation. 

Begin 
For m = 1,2,. . , , M set 

If C,“=, fm4n.r 1 A’ 
then set T = T - [2r-S-1] and 
For m= 1,2,. . . , M set f,,, = d,,,#, 

End 
else set T = T + [2r-‘-1] 

Step 5. 
Compute 

(10) 

Y’= [$fJ1 [$fmx(m)] 

stop. 

Algorithm 1 can be efficiently implemented in a bit- 
serial manner where the sequence {d,,,} is obtained by 
examining the bits of differences d(m) without introducing 
the parameter T and without performing the comparisons 
of (10). Let (6,,1&2 . ..a.,,) be the binary code of d(m), 
i.e. d(m) = c:=, 6,,,2’-“. 

Proposition. The binary sequence d,,,, m = 1, . . . . M, 
9 = 1, . . . . r of Algorithm 1 can be obtained from the binary 
codes of differences d(m) according to the following rules: 

0 if 3q E {1,2, . . . . s - 1) such that 

d m,s = 

i 

CM= f$‘d,,g < K and d m I - 0 m,q - 

L,, otherwise 

(11) 
where x is the binary negation of 6, f/,$ = nwEv, d,,,, 

V, C {1,2, . . ..q - 1) is the subset of indices such that 

CM= fk’kn,v Z Ii-. m 1 

With this proposition Algorithm 1 can be implemented 
in the bit-serial architecture shown in Figure 2. Bits of 



the differences are serially entered to the architecture. The 
values of all the flags are set to high when a new window of 
differences enters to the circuit Then they are recursively 
changed according to (11). This is done in logic switches 
(LS) which are driven by the output h of the block for 
summing and comparing. A possible realization of logic 
switches is shown in Fig. 3(b). 

Thus the mask set fm is obtained in r = log R cycles, 
where at every cycle only one compare and M - 1 adds 
are implemented. Thus the total complexity of the modi- 
fied K-NN type operation using the proposed implemen- 
tation is (r + 2)(M - 1) adds and r compares (2(M - 1) 
adds are needed for summings in (8)). For comparison the 
histogram-based algorithm of [9] for another modification 

of the K-NN filter requires 2q compares, 2m + 5q - 2 
adds, and 4(q - 1) multiplies where q is equal to the dif- 
ference between the values of the K-th and the first order 
statistics in the filter’s window. It may vary between 0 and 
R = 2’. It should be also noted that the algorithm of [9] 
is difficult to parallelize and is not suitable for VLSI imple- 
mentation whereas our method is implemented in a simple 
bit-serial architecture. 

3. PERFORMANCE ANALYSIS AND 
EXPERIMENTAL RESULTS 

We investigated the performance of the proposed filters for 
restoration of images corrupted by a mixed noise. Exten- 
sive simulations have been caried out with a variety of test 
images and noise models. 

Let X = {r(i,j),d = 1,2 ,..., 1,j = 1,2 ,..., J}, be 
an observation of an image U = {u(& j),; = 1,2,. . . , I, 
j=l,2,...,J} corrupted by mixed noise consisting of i.i.d. 
zero mean, white Gaussian noise an(i, j), rz(i, j)‘.kdhl(O, l), 
with the standard deviation d and an impulsive noise. 

Combination of the proposed impulse removal filter based 
on modified nearest neighbor type operation with wavelet 
denoising scheme makes the resulting filter very efficient 
and robust also for removing mixed Gaussian and impulsive 
type noises. In our experiments we choose g-bit 256 x 256 
“Goldhill” as a test image. This image was distorted by 
mixed Gaussian noise (g * = 100) and “salt-and-pepper” 
noise (10%) and the restored image obtained by using our 
proposed combined filter. Our proposed 3 x 3 impulse 
removal filter, MMENN was based on k-nearest neighbor 
operation using min-max impulse detecting strategy [6]. 
We use two dimensional translation invariant orthogonal 
wavelet filter banks (la-taps “Coiflet”), and as the thresh- 
olding strategy - semi-hard thresholding. The PSNRs and 
MAEs for the noisy and restored images are, respectively, 
PSNR(noisy image)=15.3 dB, PSNR(restored image)=29.9 
dB, MAE(noisy image)=19.7, MAE(restored image)=5.9 
(see Figure 3). 

In Table 1 we show MAEs and PSNRs obtained by 
applying different filters to image “Goldhill” corrupted by 
mixed Gaussian (variance 100) and “salt-and-pepper” (4% 
impulses) noise. We have choosen the following filters: MED, 
3 x 3 median filter, LUM filter (3 x 3) with parameters 
k = 3,l = 5 [7], k-nearest neighbor filter (KNN) (3 x 3) [5]. 
Table 2 and Figure 4 show the results of applying above 
mentioned filters with wavelet denoising postprocessing. 

Table 1: PSNRs and MAEs obtained by different nonlin- 
ear filters for corrupted image “Goldhill” (mixed Gaussian 
(variance 100) and impulsive “salt-and-pepper” (4% im- 
pulses) noise) 

] MED ] KNN ] LUM 
PSNR 1 27.14 1 28.16 1 27.94 

1 MAE ] 7.66 ] 6.95 ] 7.01 

Table 2: PSNRs and MAEs obtained by different nonlinear 
filters with wavelet denoising postprocessing for corrupted 
image “Goldhill” (mixed Gaussian (variance 100) and im- 
pulsive “salt-and-pepper” (4% impulses) noise) 

MED KNN LUM MMENN 
PSNR 27.43 28.34 28.61 30.49 
MAE 7.32 6.74 6.30 5.58 

Figure 3: Lejl : Noisy “Goldhill” image (corrupted by 
Gaussian with variance 100 and “salt-and-pepper” 10 %) 
Right : Restored “Goldhill” image by applying our com- 
bined filter 
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