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ABSTRACT 

In this paper we describe two new structures for nonlinear 
signal processing. The new structures simplify the analy- 
sis, design, and implementation of nonlinear filters and can 
be applied to obtain more reliable estimates of higher-order 
statistics. Both structures are based on a two-step decom- 
position consisting of a linear orthogonal signal expansion 
followed by scalar polynomial transformations of the result- 
ing signal coefficients. While most existing approaches to 
nonlinear signal processing characterize the nonlinearity in 
the time domain or frequency domain; in our framework 
any orthogonal signal expansion can be employed. In fact, 
there are good reasons for characterizing nonlinearity using 
more general signal representations like the wavelet trans- 
form. Wavelet expansions often provide very concise signal 
representation and thereby can simplify subsequent non- 
linear analysis and processing. Moreover, we show that 
the wavelet domain offers significant theoretical advantages 
over classical time or frequency domain approaches to non- 
linear signal analysis and processing. 

1. INTRODUCTION 

Nonlinear signal processing techniques are commonly ap- 
plie’d in signal analysis, detection and estimation, image 
enhancement and restoration, and filtering. In this paper, 
we develop a new approach to nonlinear signal processing 
based on the nonlinear signal transformation (NST) de- 
picted in Figure 1. Here, a length-m signal vector x is first 
expanded onto an orthonormal signal basis {bl, . . . , b,} to 
produce the vector of coefficients [&, . . . Z &IT. These sig- 
nal coefficients are then combined in nonlinear processing 
nodes 7, which are simple n-th order polynomial operations, 
to form the a-th order nonlinear coefficients of the signal 
e=p,,..., 0~1~. Concisely, we denote the NST of Figure 
1 by the operator F, : x I+ 8. 

The NST framework encompasses two new struct.ures, 
each corresponding to a different choice for the scalar pro- 
cessing nodes T in Figure 1. Product nodes compute differ- 
ent n-fold products of the signal coefficients at each node: 

V(Pl,..., Pm) = PilPia'..Pi,. 0) 
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Figure 1: Nonlinear signal transformation (JVST) F, : x I+ 
8. The front end processing (projection onto the basis {bl}) 
is linear; the back end processing (by 9 from (1) or (2)) is 
nonlinear. 

Summing nodes raise linear combinations of the coefficients 
to the n-th power: 

( ) 

n 

S(Pl,~. . I Pm) = 2ajPj . (2) 
j=1 

(Although the outputs of the product and summing nodes 
are not equivalent, we will see that they both produce sim- 
ilar NSTs.) 

We will prove that an NST architecture with N = 

( “‘+:-‘) processing nodes’ can generate all possible n-th 
order nonlinear interactions between the various signal com- 
ponents, with the strengths of these interactions reflected 
in the nonlinear signal coefficients 8. Therefore, these coef- 
ficients can be used for efficient nonlinear filter implemen- 
tations, robust statistical estimation, and nonlinear signal 
analysis. 

The NST framework is flexible, because it does not rely 
on a particular choice of basis {b, }. Traditionally, nonlinear 
signal analysis has been carried out in the time or frequency 
domains. For example, if the {b,} are the canonical unit 
vectors, or delta basis, then the components of 8 represent 

I(“+:-‘) denotes the binomial coefficient l$sj. 



(a) Delta basis 

(b) Fourier basis 

I FREOUENCV 

(c) Wavelet basis 

Figure 2: Comparison of different bases {b3} for nonlinear 
signal processing. The choice of basis employed in the Jin- 
ear front end of the NST of Figure I determines in which 
domain we represent signal interactions. Consider a second- 
order NST, which generates squares p: and cross-products 
pip, of the signal coefficients. We illustrate two basis ele- 
ments b, and b, from three different bases, in both the time 
domain and the frequency (squared magnitude) domain. In 
the delta basis, each b, is a unit pulse, so p, is simply a 
sample of the signal. The corresponding NST represents 
coupling between different time Jags of the signal. In the 
Fourier basis, each bj is a sinusoid, so /3j is a Fourier coeffi- 
cient of the signal. The corresponding NSTrepresents inter- 
modulations between different frequencies. In the wavelet 
basis, each b, is localized in both time and frequency si- 
multaneously, so ,Bj measures the time-frequency content 
of the signal. The corresponding NST represents coupling 
between different localized wavelet atoms. 

n-th order interactions between diffcrcnt time lags of the 
signal x (see Figure 2(a)). If the {b,} make up the Fourier 
basis, then 8 represents the n-th order frequency intermod- 
ulations (see Figure 2(b)). 

In this paper, we will emphasize the wauelet basis [4], 
whose elements are localized in both time and frequency. 
Wavelet-based NSTs represent the local n-th order inter- 
actions between signal components at different times and 
frequencies (see Figure 2(c)). From a practical perspec- 
tive, this can be advantageous in problems involving non- 
stationary data, such as machinery monitoring [3]. From a 
theoretical perspective, we will show that the wavelet do- 
main provides an optimal framework for studying nonlinear 
signals and systems. 

We will consider several applications of NSTs in this 
paper. NSTs provide an elegant structure for the Volterra 
filter that simplifies filter analysis, design, and implementa- 
tion. Applications of Volterra filters include signal detection 
and estimation, adaptive filtering, and system identification 
[8]. The output of a Volterra filter applied to a signal x con- 

sists of a polynomial combination of the samples of x. We 
will show that every n-th order Volterra filter can be repre- 
sented by simple linear combinations of the nonlinear signal 
coefficients 0. NSTs are also naturally suited for perform- 
ing higher-order statistical signal analysis [9]. For example, 
in the time or frequency domains, the nonlinear signal co- 
efficients 8 are simply values of a higher-order moment or 
higher-order spectrum [6]. The wavelet domain provides 
an alternative, and optimal, representation for higher-order 
statistical analysis. 

The paper is organized as follows. In Section 2, show 
that both the product and summing node NSTs provide a 
complete representation of all possible n-th order nonlinear 
signal interactions. We show in Section 3 that wavelet bases 
are optimal for NST signal analysis and processing. Section 
4 applies the theory to Volterra filtering. Setion 5 offers a 
discussion and conclusions. 

2. COMPLETE NSTS 

2.1. Criterion for Completeness 

In this section, we show that the transformation 
F n : x ++ 0 pictured in Figure 1 provides a complete rep- 
resentation of all n-th order nonlinear signal interactions. 
The notion of a complete transformation is defined as fol- 
lows. 

Definition 1 Let F,, be fixed. If for every signal x = 

[x(l), . . . , z(m)lT E IRm and every multidimensional array 
hElR”x..-xlR” \ there exists a collection of real num- 

n-times 
bers {cYL}~=~ such that 

m N 

c h,,,.,.J”Z(il). ’ ’ x(i,,) = c ak ok (3) 

tl,...,i,=l k=l 

tuhere 0 = F,,(x), then the transformation F,, is said to be 
a complete n-th order signal transformation. 

Definition 1 states that every n-th order multilinear 
functional of x may be computed by a linear functional 
of 0. Therefore, a complete n-th order nonlinear signal 
transformation allows us to study all possible n-th order 
nonlinear signal interactions of x in terms of simple linear 
operations on 0. This implies that a complete NST is ca- 
pable of realizing every possible n-th order Volterra filter of 
x. Furthermore, a complete NST captures all possible n-th 
order signal interactions necessary to compute higher order 
statistical quantities such as the moments and cumulants of 
X. 

We now show that both the product node and summing 
node transformations are complete. The NSTs can be inter- 
preted as a linear mapping on an appropriate tensor space. 
Consequently, the notion of completeness can be formulated 
as a spanning condition in a tensor space. 

First, we need some simple tensor notation. Given a col- 
lection of m-dimensional, real-valued vectors (~1, . . . , v,,}, 
with vk = [Vl,k,. . , Vm,klT, the n-fold tensor or I(ronecker 
product [I] 7 = @,“=, vj produces a vector composed of 
all possible n-fold products of the elements in (~1, . . . , vn}. 



We can also interpret the tensor r as an amorphous n- 
dimensional array with elements ril,,,,,i, = uil,r . . . Vi,,“. 
For example, the kernel h in (3) is a tensor. The n-fold 
tensor product of the vector v with itself is denoted by v(“) 
and contains all n-fold products of the elements in v. 

2.2. Product Node Transformation ok k (@+ = (~%d’d+ (8) 

In the product node transformation, different n-fold prod- 
ucts of the signal coefficients are computed at each node 
according to 

SW,... ,Pn)=PtlPt~"'Pi, 

Completeness of this transformation is easily established by 
noting that this structure is related to a tensor space. 

Tensor products simplify the description of the product 
node NST. First note that products of the form PI, ...pi,, 
can be expressed, using standard tensor product identities 

PI1 as 

We can interpret (8) as weighting the connection between 
the j-th basis element and the k-th summing node with the 
gain aJ,k (see Figure 1). 

We can also write (8) as 

with 

fk g eat,kbi, 

JCl 
k= l,...,N (10) 

PiI " 'pi,, = (bil,x)'..(bt,,x) = (ehj,X("'), 

(4) 
where (.,.) denotes the inner product. In tensor notation, 
the linear combination cr=“=, ok 6k of Definition 1 is given 

where we have used a multi-indexing scheme on the {ok} for 
notational convenience. Similarly, we can rewrite the mul- 
tilinear function on the left side of (3) as the inner product 

E, hil,...,s, f:l “‘zs,, = (h,x(“)) (6) 
I~tl~...<al&~m 

where h is a vectorized version of the kernel h. Comparing 
this expression to (3) and (6), we make the identification 

h= c a sl,...,i, (7) 
l<il<...<in<m 

It follows from (7) and Definition 1 that the product 
node NST is complete if the following condition is satisfied: 

Span 

= Span{n-th order kernels}. 

This is condition is easily established using some results 
from tensor theory [6]: 

Theorem 1 Let {br, . . . , b,} be a basis 
sis) for Rm. Then the NST with (“+c- i 

orthonornaal ba- 
) product nodes 

forming all unique n-fold produdts of ,!?I,. . . , /3,,, is com- 
plete. 

2.3. Summing node transformation 

Recall that the summing node nonlinearities (2) raise linear 
combinations of the {PI, . . . ,&,,} to the n-th power. For the 
k-th output ok, we can write 

a linear combination of the original basis vectors. Equiva- 
lently, by stacking the basis (column) vectors into the ma- 
trix B = [br,...,b,,,] and defining ak = [ar,k, . . . , a,&]‘, 
we can write 

fk = Bak, k=l,...,N. (11) 

If t.he basis vectors {bi} are viewed as functions with a 
single “bump” (for example, the delta basis in the time 
domain, the Fourier basis in the frequency domain, or the 
wavelet basis in either domain - see Figure 2), then the 
vectors {fk} will be functions with multiple “bumps.” In 
this alternative representation, the summing node NST pro- 
vides an extremely simple structure for generating arbitrary 
a-th order nonlinear signal interactions. This representa- 
tion consists of two decoupled subsystems: 

1. an overcomplete set of N = (“+i-‘) linear filters 
{fi;}r=i that control both the system dynamics and 
component mixing, followed by 

2. a set of trivial monomial nonlinearities (.)“. 

In Section 4, we will apply this powerful representation of 
the summing node NST to the Volterra filter implementa- 
tion problem. The filter bank representation not only leads 
to a simple and effective representation for the computa- 
tion of a filter output, but also provides insight into the 
dynamics of the filter. 

Similar to the analysis leading to (8), we make the iden- 
tification 

N 

h = &kf!“), (12) 
k=l 

It follows that the summing node NST is complete if 

N 
= Span{n-th order kernels}. (13) 

kc1 

Several different constructions for the filters {fk} provide 
complete summing node NSTs. Here we state the most 
general construction. For details see [6]. 



Theorem 2 Fix p E R, (p] # 1, p # 0. Set yr = prr 
r=o,..., n. Form the collection of N = (“‘+“<l) length-m 
vectors {ak}fCI according to 

{ak};=l = [Yh,~. . , %,l lj = n, 1, E (0, . . .,n} . 

3=1 

(14) 
Then, with {ak}fzI employed in (8) or (ll), the condition 
(13) holds, and the corresponding summing node NST is 
complete. 

3. NSTS IN THE WAVELET DOMAIN 

The previous section has shown that complete nonlinear 
signal transformations can be derived from any orthonor- 
mal signal basis B = {bi,. . . , b,,,}. For example, B may 
be a time, Fourier, or wavelet domain basis. We will now 
show that wavelet-based NSTs offer a significant theoretical 
advantage. The motivation for wavelet-based NSTs is de- 
veloped for infinite-dimensional (continuous) spaces (note 
that until now we have focused on finite-dimensional sig- 
nal spaces), The properties of wavelet-based NSTs in the 
infinite-dimensional setting carry over to high-dimensional 
sampled spaces. 

It has been shown that noise removal, compression, and 
signal recovery methods based on wavelet coefficient shrink- 
age or wavelet series truncation enjoy asymptotic minimax 
performance characteristics and do not introduce excessive 
artifacts in the signal reconstruction [5]. The theoretical 
justification for the exceptional performance of wavelet- 
based processing is the fact that wavelet bases are uncon- 
ditional bases for many signal spaces. 

It is well-known that wavelet bases derived from mul- 
tiresolution transformations are unconditional bases for a 
diverse variety of signal spaces. However, for the NSTs of 
interest, tensor spaces are the natural framework to con- 
sider. Hence, we would like to establish the unconditional- 
ity of tensor product wavelet bases. It should be noted that 
the tensor wavelet basis, also referred to as the “rectangular 
wavelet decomposition” [7], is quite different from the usual 
multidimensional wavelet basis obtained via a multiresolu- 
tion analysis. 

The theorem below, proved in [6], shows that the tensor 
product of a wavelet basis is an unconditional basis for the 
tensor space L,(Il%) @A, L,(lK), which is isometric to the 
space of 2-d L, functions. 

Theorem 3 If {di} is an unconditional wavelet basis for 
L,(lR), 1 < p < 00, then {di@tij} is an unconditional basis 

for b(R) @A, J%(R). 

This result can easily be extended to arbitrary n-th or- 
der tensor spaces, and shows that wavelet-based NSTs cor- 
respond to an unconditional basis expansion of the nonlin- 
ear signal coefficients. It should be possible to extend this 
result to more general spaces, including various smoothness 
spaces. One possible starting point for the general problem 
may be found in [ll]. 

Figure 3: Volterra filter realization using a summing node 
NST. 

4. APPLICATION TO VOLTERRA FILTERING 

In this Section, we consider Volterra filter realizations based 
on the NST. We show that a complete n-th order NST 
is capable of realizing every n-th order Volterra filter. In 
particular, the summing node transformation leads to an 
elegant filter bank representation. 

The output of a homogeneous n-th order Volterra filter 
applied to a signal x = [xl,. . . , z,,,]~ is given by [8] 

Y= c hil,...,;, 211 . . . zi,,. 05) 
l<il<...<in<m 

The filter output y is simply an n-th order multilinear com- 
bination of the samples 21,. . . , zm. The set of weights h is 
called the n-th order Volterra kernel. Note that while (15) 
computes only a single output value given m input values, 
the extension to online processing of infinite-length signals 
is straightforward. To treat the input signal 21, we sim- 
ply set xl = [zr, . . . , zi-m+i]T, with m the memory length 
of the filter. The output of (15) is then yr, a nonlinearly 
filtered version of zr. 

Since (15) is identical to the multilinear functional (3) 
appearing in Definition 1, it follows that every n-th order 
Volterra filter can be computed as a linear combination 
of the nonlinear signal coefficients 8 = Fn(x). As shown 
in Section 2, both the product node and summing node 
structures are capable of computing a complete n-th or- 
der signal transformation. The summing node structure is 
particularly interesting in this application, because it al- 
lows us to represent, every n-th order Volterra filter using 
the simple filter bank of Figure 3. Key to this scheme is 
that the overcomplete linear transformation, rather than the 
nonlinearities, manage the signal coupling prescribed by the 
overall Volterra filter. Therefore, this new representation 
greatly simplifies the analysis, synthesis, and implementa- 
tion of Volterra filters.’ 

Volterra filter realizations of this type are often referred 
to as parallel-cascade realizations [lo]. Previous work on 
parallel-cascade designs has relied on complicated numerical 
optimizations to construct kernel-specific sets of linear fil- 
ters and hence a separate parallel-cascade structure for each 
distinct Volterra filter [2, lo]. In contrast, the summing 

2The canonical representation of the \Tolterra filter (15) is of 
limited utility, due to the inherent difficulty in interpreting the 
multidimensional kernel h (particularly when n > 2). 



node NST can represent every n-th order Voltcrra filter sim- 
ply by adjusting the output weights {ok}~=r. The linear 
filters {fk}F=r of the summing node structure remain the 
same for every Volterra kernel. Hence, the summing node 
structure is a universal structure for homogeneous Volterra 
filtering. Nonhomogeneous Volterra filters can also be im- 
plemented with the summing node structure by following 
each linear filter with an n-th degree polynomial nonlinear- 
ity instead of the homogeneous n-th order monomial. 

The weights {ok} corresponding to a specific Volterra 
filter with kernel h can be computed by solving a system of 
linear equations. Let h be a vectorized version of h ordered 
to correspond to the Kronecker product in (6). According 
to (12), the Volterra kernel generated by the summing node 

NST is given by c,“=, (Ykf(“). Therefore, to represent the 
Volterra filter with kernel h we choose the weights {ok} 

so that c,“=, okfr) = h. The proper weights are readily 
obtained by solving this system of linear equations. 

As an example, consider the implementation of a home 
geneous third-order (n = 3) Volterra filter using the sum- 
ming node NST. Let B = {b,}y=, be an orthonormal basis 
for R”. For example, B could be the delta, Fourier, or 
wavelet basis. We design the filters fi,. . . ,fN, N = (“‘$2), 
for the summing node transformation using the construc- 
tion of Theorem 2. Referring to the Theorem, we take 

= 2 and hence ys = 1,yr = 2, yz = 4, y3 = 8. Each 
ilter fk, k = l,... , N, is a linear combination of the basis 
vectors: fk = I&Q, with nk a vector with elements in the 
set {1,2,4,8}. Each nk consists of all 1s except for either a 
single 8, a 2 paired with a 4, or three 2s. Raising the out- 
put of each filter to the third power generates third-order 
interactions between the different distinct components of 
the input signal represented by the basis vectors. Taken 
together, these filters collaborate to generate all possible 
third-order nonlinear interactions of the signal. 

Different types of interactions are produced depending 
on the choice of basis. The delta basis produces interac- 
tions between different time samples of the signal. The 
Fourier basis yields frequency intermodulations, whereas 
the, wavelet basis produces interactions between wavelet 
atoms localized in both time and frequency. The fact that 
wavelet tensor bases are unconditional bases for many ten- 
sor spaces suggests that wavelets may provide a more par- 
simonious representation for Volterra filters than time- or 
frequency-domain representations. 

5. CONCLUSIONS 

In this paper, we have developed two new structures for 
computing n-th order NSTs. The product and summing 
node NSTs, while simple, can represent all n-th order non- 
linear signal interactions. Both transformations have an 
elegant interpretation in terms of tensor spaces. The sum- 
ming node NST results in a redundant filter bank structure 
natural both for analyzing and interpreting nonlinear in- 
teractions and for designing efficient implementations. Not 
only does the summing node architecture suggest new, effi- 
cient algorithms for nonlinear processing, it also decouples 
the processing into linear dynamics and static nonlineari- 
ties. 

NSTs are not constrained to a fixed choice of basis. 
However, we have shown that wavelet bases provide an 
optimal framework for NSTs in the sense that wavelet 
tensor bases are unconditional for many important tensor 
spaces. Because the wavelet basis provides a more concise 
representation of many real-world signals, Volterra kernels 
and higher-order moments and kernels can be more effi- 
ciently represented with wavelets as compared to time- or 
frequency-domain approaches. W7e have focused on the clas- 
sical L, tensor spaces in our theoretical analysis of wavelet- 
domain nonlinear processing. However, new results in the 
statistical literature suggest that more general spaces such 
as Besov and Triebel spaces are extremely useful for chnr- 
acterizing real-world signals [5]. Therefore, an important 
avenue for future work will be to extend the results of this 
paper to these more general settings, possibly using the re- 
sults of [ll]. 
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