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Abstract 

Image formation is quantised by imposing an im- 
age induced connection and computing the associated 

torsion and curvature in terms of differential or inte- 
gral invariants. Imposing invariance of the image for- 

mation under the classical group of movements slot- 
machines reading out the torsion and the curvature 
are shown to locate endpoints and other type of inter- 
esting topological objects. Requiring instead invari- 
ance under the group of anamorphoses and the group 
of diffeomorphisms of the image only ridges and ruts 
can be identified through a non-local topological or 
integral geometric operation. 

1 Introduction 

The goal in image analysis and pattern recognition 

is to find a stable and reproducible description and 
encoding of an image or better its formation, that 
is slightly affected by certain sets of transformations. 
These sets include the group of anamorphoses, the 
classical groups such as that of Euclidean movements 
and the transformations caused by noise. In order 
to achieve stability and reproducibility under these 
transformations one turns to so-called scale-space 
theories. A modelling of and a smoothing of the im- 

age formation process appears to *be in the context of 
these theories indispensable [l]. 

Our aim is to demonstrate in section 2 that a grey- 
valued image can be provided with a non-flat image 
induced connection. Furthermore, that the torsion 
and the curvature associated with this connection can 
be measured in terms of differential or integral invari- 

ants. These invariants in their turn can be expressed 
in ordinary algebraic combinations of the image grey- 
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values. It is shown that so-called ridges and ruts of 
an image are the essential physical objects being in- 
variant under the group of anamorphoses and diffeo- 

morphisms of the image domain. Furthermore, that 
they can be detected by a non-local topological or in- 
tegral geometric operation. Section 3 concludes with 
a discussion of further research. 

2 Image Formation 

Modern geometry of image formation is treated in 
subsection 2.1 within the context of differential geom- 

etry and in subsection 2.2 within that of integral 
geometry. It’s demonstrated that torsion and curva- 

ture of the image formation can be expressed in terms 
of the image structure and they reveal the topological 
interesting objects in images such as ridges, ruts and 

endpoints. For proofs of theorems and more extensive 
expositions of modern geometry see the references in 

PI 

2.1 Differential Geometry 

Let M be a D-dimensional image do- 
main parametrised by canonical coordinates 
p = (pl,...pP). Now consider the frame bun- 
dle F q P(M, r,A(D,R)) where P is the total 
space consisting of all frames !BP at each point 
p E M, r : P + M is the projection and 
A(D, R) = GL(D? R) D T(D, R) the full al&e group, 
where Gl(D, R) is the general linear group and 
T(D, R) the translational group. In this context let’s 
define a local frame as follows. 

Definition 1 A local frame ap is defined by: 

Gp = (2; el, . . . , eo) (P), 

where the vectors (z, el, . . . co)(p) span the local tan- 
gent space T,A(D, IQ. 



Now an affine connection r in the frame bundle F is 
defined as follows. 

Definition 2 An afine connection r in the frame 
bundle F is defined in terms of the Lie algebra 
G(D, IR)-valued connection one-forms (wi, w!) and 
the frame vectors (x, el, . . . eD) through the following 
equality: 

Vx = wiei, Vei = wiej, 

where V is the covariant differential operator. 

The affine connection I’ satisfies so-called structure 
equations: 

Theorem 1 Given an afine connection r in the 
frame bundle F, defined in (A’), then the connection 
one-forms satisfy the following structure equations: 

where d the ordinary exterior derivative, A is the 
wedge product, D the covariant derivative, Ri is the 
torsion two-form and 0; is the curvature two-form. 

In turn the torsion and the curvature two-form satisfy 

so-called Bianchi identities: 

Theorem 2 Let r be an afine connection in the 
frame bundle F with torsion two-form 0: and cur- 
vature two-form 0;. The integrability conditions for 
the structure equations, that are the Bianchi identi- 
ties, are given by: 

Df-$ = “j A ,j, of); = 0, 

After this concise summary let us quantise im- 
age formation of a grey-valued image Lo on a two- 
dimensional Euclidean image domain E2 onto lR+ in 
terms of its differential geometry. For generalisations 
to higher dimensional spatio-temporal grey-valued 

images possibly endowed with other local geometries 
the reader is referred to [l]. The essential correspon- 
dence between the differential geometries of images 
on two-dimensional and higher dimensional domains, 
however, will be indicated. 

Definition 3 A grey-valued image Lo on a two- 
dimensional Euclidean space E2 onto II%+ is defined 
by a scalar-valued density function: 

Lo:E2+R+. 

Thus the grey-value of a pixel is normally just some 
weighted integration of this density function over its 

corresponding spatial neighbourhood. So an image is 
some tested measure or better distribution. 

Besides that we study the meaning of those dif- 
ferential geometric invariants that are the same un- 
der the spatially homogeneous Euclidean group ac- 
tion E(2) we also contemplate the essence of those 
differential geometric invariants not affected by the 
group of anamorphoses and by the group of (volume 
preserving) diffeomorphisms of the grey-valued im- 
age. 

Definition 4 The group of anamorphoses of grey- 
valued image (3) is the set of non-constant spatially 
homogeneous and monotonic grey-value transforma- 

tions f : LO -+ f(L0). 

Note that an anamorphosis may invert the order of 
the image grey-values. .4namorphoses become impor- 
tant as soon as one would like to find the equivalences 
in images realised by camera systems with different 
sensitivity characteristics. 

Definition 5 The group of diffeomorphisms G of the 
grey-valued image (3) is defined by g(Lo, x) = (LO, 2) 
with g E G such that the following conservation law 
holds: 

J, Lod2x = J,bod2x. 

This group plays a crucial role as soon aa the imag- 
ing plane is subjected to a Euclidean movement with 
respect to the projection center. Level sets of the 
grey-valued image under this type of transformation 
do not coincide with central projected versions at all, 
but the total flux subtended by a fixed spherical an- 

gle 0 should of course remain the same unless there 
occur losses due to the change of the unit normal 
to the imaging plane with respect to the visual rays 
[l]. The reason for this non-trivial aspect in the im- 
age formation is that a grey-valued image is a den- 
sity and not a scalar function. In order to perform 
a sensible analysis despite this group of transforma- 
tions one “gauges” the vision system in a particular 

manner, namely by imposing a spherical or elliptic 
geometry after fixing a distance between the center 
of projection and the imaging plane [l]. Doing so we 
can define equivalence relations for images under this 
group of transformations because they now do not 
cause any problem as they are nothing more than 
rotations of the a.ngular coordinatisation of the grey- 
values. Note that diffeomorphisms of the image by 
active transformations of the scene can still occur but 
that they yield only specific equivalences we return 
to later. Furthermore, that observation space for one 
view has been simplified considerably, but that the 



essential equivalence relations and objects consistent 
with this view do not carry over to other views. The 
only pragmatic attitude to adopt in dynamic monoc- 
ular or binocular vision is just to establish dynamic 
aspect graphs [l] in which each view is a visual event. 
Last but not least one should realise that an ima.ge 

is the consequence of a sampling at a certain resolu- 
tion of an intensive physical field. Increasing the the 
resolution properties yields non-versal deformations 

(morphisms) of the coarser image. More precisely, an 
coarse resolution image is a typical recombination of 

a fine resolution image in which the recombination 
process is steered by a dynamical scale-space para- 
digm [l]. The latter morphological changes gener- 
ated by such a paradigm should not be confused with 
those caused by an active exploration of the scene 

that introduce upon approaching an object a relative 
increase of the inner scale with which this object is 
observed. As mentioned above these kind of changes 
should be embedded in a more dynamic scale-space 
paradigm to prevent ambiguities. 

Now let us try to find some interesting image struc- 
tures invariant under the above defined groups. The 
essential physical objects of the image LO invariant 

under the first two groups of transformations above 
are so-called isophotes and flowlines and their Euclid- 
ean geometry. 

Definition 6 An isophote Ci of a two-dimensional 
grey-valued image LO is defined by: 

LlJ(Xl) = c E Iw+. 

Definition 7 A flowline Cf of a two-dimensional 

grey-valued image LO is defined by: 

dx2 
- dLO(x2(p)); 52(O) = x20 E E2, dp - dxi 

where p E I% is an arbitrary parameter. 

Let us make explicit some Euclidean differential 
geometry of the net of isophotes and flowlines by 
choosing a frame field @ and a connection (wi, wj) 
as follows: 

@ = (xl,x2;el,e2), 

(wi,wj) = (dsi, rkjidSk), 

with 

rkji = 

Let’s continue and find the essential physical ob- 

jects of the above net invariant under the group of 
(not necessarily total grey-value preserving) diffeo- 
morphisms of the image domain caused by active 
transformations. The latter active transformations 
may lead to anamorphoses of the image or integrable 

deformations of the net of flowlines and isophotes. 
It’s clear that the set of (non)-isolated singularities 

and the set of discontinuities of LO remain the same 
topological equivalent sets under these transforma- 
tions. The vanishing of the image gradient is not 

affected, neither are discontinuities in LO. A set of 
nonisolated singularities occurs, for example, for im- 

ages like Lt(z,y) = -R((x +iy)*), n E N. It 

is not so straightforward to see that this invariance 
also holds for the landscape of ridges and ruts of the 
image LO [l]. The latter topological equivalence can 

be explained by the fact that at ridges and ruts the 
integral curves of the image gradient have opposite 

convexity. Consequently the connection at the ruts 
and ridges is completely degenerate implying that any 
order of derivative with respect to the Euclidean ar- 
clength parameter s* along the isophotes of the flow- 
line curvature field is vanishing. Because taking all 
orders into account, and the fact that to a finite order 
there will always be non-ridge or non-rut points for 
which they are zero, it is impossible to distinguish 

on the basis of a pure local analysis between ridges, 
ruts and the borders of their influencing zones con- 
sisting of e.g. inflection points. Nevertheless, possible 

ridges and ruts can be discerned on the basis of a lo- 
cal analysis of the isophote curvature ~1. If ~1 > 0 
and K:! = 0, then the points belong to the set of pos- 
sible ridge points. If ~1 < 0 and ~2 = 0, then the 
points belong to the set of possible rut points. In or- 
der to find ridges and ruts one has to apply, as will 

where el? sl, ICY and e2, s2, IQ are unit tangent vec- 
tor fields, the Euclidean arclengths and curvatures 

on the isophotes and flowlines, respectively (realise 
that the latter curvature are just invariant zero-forms 
being factors in the choice of connection). It is read- 
ily shown by means of the Cartan structure equat.ions 
that the net of isophotes and flowlines with the above 
connection has both a non-zero torsion tensor I and 
a non-zero curvature tensor 72: 

I = Tjk ‘Wj 8 Wk 8 fiy 

R = Rikl ‘~3’ 8 wk @ W1 8 Cj, 

where 

T. k = $rjki - rkji), Ik 

nj, i 
Rjk, i = - - 

dr,, i 

dsk 
r + rjl “r,; - rkl nrnji. 
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be shown shortly in the next subsection, a non-local ing iD(D - 1) pairs of them will yield submanifolds 

topological or integral geometric operation. containing the desired submanifold S. These inte- 
The reader might object that these objects are gral invariants are intrinsic vectors of the submani- 

nothing more than some special sets of discontinuities fold (S, I’) and also of the manifold (44, I’). Using 
in the second order jet structure and that this multi- Stokes’ theorem the translation and rotation vector 
jet property not only occurs for singular flowlines. fields can be expressed as [I]: 
Indeed, the change in convexity is an image induced 
discontinuity determined by multi-local properties of b= 
the exterior derivative field of the image influenced by J 

Riei, fi = 
S J 

fliej. 
S 

second order jet information. And for isophotes such 
changes in convexity do also occur. For example, at 

the set of non-isolated singularities along the flowlines 
of the images L,” mentioned above the isophotes also 
change convexity. However, this set can be consid- 
ered, equally well as the set of extrema of the image, 
as just parts of the landscape of ridges and ruts. At 
a n-junction where different components of a set of 

At vertices of intersecting Volterra surfaces or at sin- 
gularities where ridges and ruts meet the translat,ion 
and rotation vector fields satisfy the following super- 
position principles (conservation laws for “topologi- 
cal” currents as Kirchhoff’s law for electric currents): 

nonisolated singularities or ridges and ruts are coming 
together there is just a n-fold branching or a n-fold 

where the sum is over the different components of the 

degeneracy of the image gradient, respectively. 
cut lines carrying vector fields b and fi. 

The above image analysis can readily be extended 
to those on higher dimensional image domains en- 
dowed with other local geometries and smoothing 
schemes [ 11. For example in t.he case of three- 
dimensional grey-valued images normally the unit 

normal frame field to an isophote will be unique 
but for some singular ones they will be multi-valued. 
Again topological operations and slot-machines for 

reading out torsion or curvature can be used to lo- 
cate singularity or discontinuity sets of non-constant 
co-dimension. 

2.2 Integral Geometry 

Figure 1: Left frame: a 256 x 256 pixel-resolution dis- 
crete input image Lo(s, y) = Li(x, y). Right frame: 
the Euclidean length of the translation vector (bl for 

Following Cartan (see [l]) one can apply a displace- a linearly scaled version of that image. 

ment to determine the translation vector field and the 
rotation vector fields to operationalise the torsion and Now let us demonstrate that an integral geometric 

the curva.ture of the frame bundle F with connection operation suffices to detect certain types of singu- 
r. larity sets. In figure 1 the length of the translation 

Definition 8 Let r be a connection in the frame 
vector field b for a discretised input image Lo on a 

bundle F. The translation vector field b and the rota- 
two-dimensional Euclidean space E2 is computed by 

tion vector fields f; determined by the connection are 
means of linear scale-space theory [I]. The set of 

defined by: 
non-isolated singularities will instantaneously disap- 
pear upon linear scaling, but the ridges and ruts, and 

b=iVz, f,=hVei, 
other type of discontinuities can be nicely detected. 

Imposing invariance under the group of Euclid- 

where C is an infinitesimally small closed loop and 
ean movements and the group of anamorphoses 

boundary of a two-dimensional submanifold S of M 
the Euclidean geometry of the net of flowlines and 

with the same induced connection l?. The sense of 
isophotes does matter. Computing the length lb1 

traversing the loop is chosen such that the enclosed 
shows clearly that the isophote curvature ~1 is high 

submanifold is to the left. 
on (z, y) E R- x 0 and that the flowline curvature 
4 increases on (z, y) E R- x 0 approaching the ori- 

On the basis of the connection one forms &, a folia- gin (z, y) = (0,O). Apparently the translation vector 
tion of the manifold (M, I’) can be rcalised and choos- b is a perfect slot-machine to locate cut lines and 



endpoints that are the essential topological objects 
in two-dimensional images such as fingerprint images 
and images of vesseltrees. 

Imposing in addition invariance under (volume pre- 
serving) diffeomorphisms of the image domain only 

ridges and ruts can be distinguished on the basis of 
the valencies of the vertices and the energy values en- 
closed by them. The detection of ridges and ruts can 

be realised, as mentioned in the previous subsection, 
by a non-local topological or integral geometric oper- 
ation with respect to the unit normal field of the set 
of flowlines along the isophotes. In the following we’ll 
make these methods explicit and illustrate them. 

In order to actually find by a non-local topologi- 
cal operation ridges and ruts parametrise the image 
by means of e.g. the z2-axis and trace the extrema 
of the image gradient length on each line for which 
x2-value is constant. Local minima and maxima in 
the image gradient length on these lines then corre- 
spond to rut and ridge points, respectively. Alterna- 
tively, take a strip of thinkness of one just noticeable 

isophote and walk around the global maximum and 
keep track of the extrema of the length of the image 

gradient field upon encircling it with the next just 
noticeable isophote. This supplies us with another 
non-local topological method for finding ridges and 
ruts that is equivalent with the well-known watershed 

method applied in mathematical morphology. 

The non-local integral geometric operation consists 
of a difference operation in a distributional sense (in- 
tegral invariant manner) at the ridges and ruts along 

the isophotes with respect to the unit normal field 
of the sets of flowlines on either side of these singu- 
lar flowlines. In the neighbourhood of inflections of 

the flowlines the unit normal field can not be defined 
but on either side of the isophote passing through 
the inflections the convexity of the flowlines is the 

same yielding consequently zero output. Note again 
performing such an operation on the input image of 
figure 1 again highlights the z--axis as cut line and 
the origin as endpoint. The image formation can be 
summarised as taking a half-infinite strip on which is 
defined a ramp image and wrapping this sub-image 
to and forth the origin over the the z--axis. 

3 Further Research 

type of singularity sets are the essential physical ob- 
jects bordering different image formation processes. 
A study of these CW-complexes and particular paths 
on them, for example paths in three-dimensional im- 

ages on ribbon knots, can be quite fruitful in estab- 
lishing the topological aspects involved in the global 

image formation processes. The latter topological as- 
pects might then for instance be quantified in terms 
of so-called (generalised) Vassiliev invariants specify- 
ing the dynamical processes involved. In this context 
it might be also interesting to find other topologi- 
cal invariants by applying Chern-Simons perturba- 
tion theories. Establishing equivalence relations in 
terms of these kind of topological invariants might 
be worthwhile in case of a description of dynamical 
aspect graphs. Moreover, the “half-space method” 
introduced in [l] can refine the local multi-jet struc- 
ture (of the topological currents) considerably and 
thus the equivalence relations on the CW-complexes. 

In [l] the author proposed to smooth the vector 
densit.y fields quantising the image formation in a 
non-linear differential or integral geometric manner. 
In this context it might be interesting to formulate 
also so-called dynamic scale-space theories that are 
topologically equivalent or, as physicists say, that are 
covariant. According to this author one then has to 
turn to theories taking the landscape of ridges and 
ruts, and the total grey-values in between as a finite 
CW-complex. The finite CW-complex structure can 
savely be subjected to morphisms defined in terms of 
the valencies and the couplings on the CW-complex. 
One might conjecture that depending on the partic- 
ular chosen paradigm to achieve a task certain types 
of dynamical processes will survive, whereas others 

definitively will fade out. First studies and experi- 
ments confirm that certain types of dynamic scale- 

space paradigms lead to recurrence of certain topo- 
logical image formation characteristics, whereas oth- 
ers definitively yield irreversibly trivial ones. Further 

research in dynamic scale-space theories with respect 
to CW-complexes representing image formation that 
conserve certain topological aspects should be under 
way by now. The outcomes of such a research might 
have some spin-off in autonomous system research, 

cognitive sciences and the field of artificial intelli- 
gence. 

In this paper modern geometry has been proven to be References 
extremely useful in quantifying the image formation 

of grey-valued images and localising essential physical [l] A. H. Salden, Dynamic Scale-Space Paradigms. 
objects like ridges, ruts and endpoints. This geomet- PhD thesis, Utrecht University, The Netherlands, 
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