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ABSTRACT 

The objective of this paper is to investigate a new 
non-it.erative paradigm for image reconstruction based 
on the use of nonlinear back projection filters. This 
method, which we call nonlinear back projection (NBP), 
attempts to directly model the optimal inverse opera- 
tor through off-line training. Potential advantages of 
the NBP method include the ability to better account 
for effects of limited quantities and quality of mea 
surements, image cross-section properties, and forward 
model non-linearities. We present some preliminary 
numerical results to illustrate the potential advantages 
of this approach and to illustrate directions for future 
investigation. 

1. INTRODUCTION 

In recent years, considerable effort has been put into 
the development Bayesian model-based approaches to 
toniographic image reconstruction(1, 2, 31. While these 
methods can substantially improve reconstruction qual- 
ity, these iterative methods can be computationally de- 
manding, requiring at least 10 to 20 times the com- 
putation of filtered back projection. Even the best 
reconstruction algorithms may produce artifacts that 
can be visually identified in limited data problems. In 
fact, several techniques have been proposed to take ad- 
vantage of restrictive a priori knowledge of the object 
to compensate for these limitations in nonlinear geo- 
metric reconstruction [4, 5, 61. The fact remains that 
conventional filtered back projection (FBP) can pro- 
duce surprisingly good quality reconstructions despite 
its limitation to simple averaging of projection data. 

In this research, we propose a more direct and non- 
linear approach to the Bayesian tomographic inverse 
problem. Rather than trying to develop an accurate 
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forward model that can be inverted, our approach is 
to directly model the inverse operator. The goal 
is to develop an non-iterative Bayesian reconstruction 
method which requires computation comparable to con- 
ventional CBP methods, but achieves quality compari- 
ble to or better than that of current Bayesian methods. 

The method we propose forms a back projected im- 
age cross-section by applying non-linear filters to the 
projected data. This method, which we call non-linear 
back projection, attempts to directly model the opti- 
mal inverse operator through off-line training of these 
non-linear filters using example training data. This di- 
rect approach to modeling of the inverse operator has 
a number of potential advantages which make it inter- 
esting: 
Better modeling of image cross-section behav- 
ior - Current Baycsian models, such as MRF’s are lim- 
ited in their complexity by the difficulty of estimating 
model parameters. A direct model can be more effec- 
tively trained for the attributes of typical image cross- 
sections. 
Better modeling of non-linear forward models - 
Non-linear forward models are difficult to incorporate 
in current Bayesian methods. This problem is avoided 
by direct modeling of the inverse operator. 
Less computation - Since direct non-linear inversion 
is not iterative, it has potentially much lower compu- 
tational requirements. 

2. NON-LINEAR BACK PROJECTION 
METHOD 

The nonlinear back projection tomography (NBP) method 
is illustrated in Fig. 1. Conventional CBP works, as 
shown in Fig. l(a), by filtering the projections along a 
specific angle, 8, and then back projecting the result. 
Theoretically, this method yields perfect reconstruction 
with a continuum of data, but in practice it is well 
known to produce artifacts, and either overly smooth 
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Figure 1: This figure illustrates that basic concept 
of nonlinear back projection. (a) Conventional CBP 
works by filtering the projections at each angle and 
then back projecting the result. (b) Nonlinear back 
projection applies a nonlinear filter to a window of data 
in the sinogram and then back projects this result. 

or excessively noisy reconstructions. The NBP method 
works by applying a nonlinear filter to a window in 
the sinogram space as illustrated in Fig. l(b). The be- 
havior of this filter depends on the local characteristics 
of the sinogram. In addition, the filter’s characteris- 
tics may depend on the specific pixel being back pro- 
jected; however, we will not consider this dependence in 
the present investigation. The non-linear filter is then 
formed by combining M distinct linear filters, each of 
which is designed to minimize mean squared error for 
some class of input values. A related model has been 
proposed by Popat and Picard [7] for application in 
image restoration, and compression. 

3. DERIVATION OF NBP ALGORITHM 

Let Y be a vector containing all the sinogram data, and 
let X be a pixel in the unknown image cross-section. 
Furthermore, let Yj be the vector of sinogram samples 
taken from the jth window. In other words, j indexes 
the projection angle and Yj contains the samples from 
the filter window of Fig. l(b). Notice that the posi- 
tion of the window along both the t and 0 coordinates 
will depend on the particular pixel being reconstructed. 
For simplicity, we will assume that the center pixel of 
the window falls precisely on the on the path integral 
required for back projection. In practice, the back pro- 
jection is interpolated by a weighted combination of 
neighboring projection windows, but this does not sub- 
stantively effect the resulting analysis. 

The conventional CBP reconstruction may be ex- 
pressed as 

X=xFY, 

j 

where F is the matrix which implements a filter along 
t, and the sum over j is the back projection operation. 
For conventional CBP, the matrix F does not depend 
on j, the projection angle. Moreover, most of the ele- 
ments in F are zero since only the samples at a single 
angle are filtered. 

For NBP, we will make the assumption that each set 
of samples, Yj, has associated with it a discrete class, 
Cj , which takes on values between 0 and M - 1. Instead 
of a single filter, WC will have M filters denoted by F, 
where 0 5 c < M. We will make two assumptions 
expressed in the following two equations. 

E[XIY,C] = cFcjy, 

P{Cj = ClY} = flC,Yj) . 

The first equation states that given the class informa- 
tion, the minimum mean squared error (MMSE) esti- 
mate may be obtained by applying an appropriate filter 



to each window. The second equation states that the 
distribution of each class is only dependent on the pix- 
els in the associated window. Using these two assump 
tions, we compute the MMSE estimator of X given Y. 

0) 

= 
Intuitively, this optimal estimator is formed by apply- 
ing a spatially varying filter, CC F,f(clYj) to the sino- 
gram. Since the filter depends on the data in the win- 
dow through f(clYj), this is actually a nonlinear filter. 
The image is t.hen reconstructed by back projecting the 
nonlinearly filtered sinogram. 

To apply this strategy, the filters F, and the distri- 
bution f(clYj) must be estimated. To do this, we first 
rewrite (1) in the form 

E[W’] = CFc xf(cIW$ = xFc% 
c ( ) j c 

where VC = Cj f(clYj)Yj. By defining, 

Fe = [Fo,Fl,-.,h-I] yo p= y1 I : 1 YM-1 

the optimal filters may be easily computed as the least 
squares solution to 

In order to compute the probabilities f(clq), we 
use a Gaussian mixture model for Yj so that 

P(Yj) = CPbjlcbc 
e 

where p(yjlc) is a multivariate Gaussian distribution, 

and Cr-’ rC = 1. The parameters of p(yjIc) and the 
probabilities x, may be estimated using the EM algo- 
rithm [8, 9, lo]. Given the mixture model, we have 

P(Yj IC)rc 
f(c’Yj) = C,p(yjJC)T, ’ 

4. EXPERIMENTAL RESULTS 

In this section we present preliminary experimental re- 
sults to illustrate the method of NBP. Figures 2 (a) 
and (b) show the synthetic phantom together with the 
filter back projection reconstruction. The cross section 
was reconstructed at a resolution of 128 x 128 from 16 
uniformly spaced projection angles. Figure 2 (c) and 
(d) show the result of training and applying NBP with 
18 and 60 clusters respectively. Notice that the NBP 
reconstructions have reduced artifacts because each of 
the filters is designed to smooth these errors. However, 
some sharpness is also lost along the edges of features. 
We believe that this sharpness can be recovered by al- 
lowing filters to vary depending on the spatial location 
of pixels in the image. 

Figure 3 illustrates hoti the filters for various clus- 
ters vary. Each slice through the 3-D plot shows the 
filter values for a specific cluster. Notice that some 
filters are impulsive while others are smoothing func- 
tions. 

Figure 4 shows how the mean squared error (MSE) 
varies with the number of clusters used in the NBP 
reconstruction. The MSE is normalized with respect 
to filtered back projection reconstruction; so an MSE 
of 1 is equal to that of filtered back projection. Notice 
that as the number of clusters is increased the MSE de- 
creases because the projections with different behaviors 
can be treated differently. This effect is more notice- 
able when the MSE is computed on the entire image 
because of the large discontinuity generated at the sup- 
port boundary of the object. 

5. CONCLUSION 

We presented a novel nonlinear image reconstruction 
algorithm which is conceptually similar to filtered back 
projection, but is not limited by a restriction to linear 
filters. Preliminary results indicate that the method 
can reduce reconstruction artifacts. We expect that 
the method can be improved by making the filters a 
function of both the cross-section pixel and the projec- 
tion data. 
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Figure 3: Plot of 18 different filters used in back pro- 
jection operation. Each filter has 9 taps. Notice that 
some filters are impulsive while others are smoothing 
functions. 
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Figure 4: Plot of mean squared reconstruction error 
versus number of clusters. A value of represents the 
mean squared error achieved by filtered back projection 
Notice that the error decreases more rapidly for the 
entire image since this includes the large discontinuity 
along the support boundary of the object. 
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Figure 2: (a) Original phantom used for simulations; (b) Filtered back projection reconstruction; (c) Nonlinear 
back projection result using 18 clusters; (d) Nonlinear back projection result using 60 clusters. 


