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ABSTRACT 

Two approaches of multistage gradient robustifi- 
cation for image contour detection are presented 

in this paper: two stages of Difference of Es- 

timates and Difference of Estimate followed by 

an optimal filtering. Watershed transformation 

is then applied to these robustified gradient im- 

ages to effectively detect image contours which 

are guaranteed to be in closed form. Multistage 

gradient robustijication provides the flexibility of 

using different image processing techniques and 

produces good detection results for the images 

highly corrupted with noise. 

1. INTRODUCTION 

Contour detection is a key step in computer vi- 
sion systems. It converts a gray-scale image into 
a binary one which preserves a great deal of use- 
ful information in the original image. The rest 
of the vision process can deal with the simple 
form, instead of dealing with the gray-scale im- 
age directly. The contours of an image are usu- 
ally considered to be lines where the gray tone is 
varying quickly compared to the neighbourhood. 

The contour can be emphasized by taking 
the gradient of the image. If this gradient im- 
age is regarded as a relief, the searched contours 
correspond to some crest lines of the gradient 
function. Not all crest lines are interesting in 
segmenting the image, however. Only the closed 
contours should be extracted. The gray scale 
skeleton of the gradient image has parasitic den- 
drites, i.e. lines that are not closed. In order to 
remove these useless lines we resort to watershed 

transformation. 

Watershed transformation [3, 41 starts with 
a gradient image as input, the contours of an 
image are defined as the watersheds of its gradi- 
ent, the morphological gradient is thus the basis 
of the morphological approach to contour detec- 
tion. 

The standard morphological gradient suffers 
from the problem of excessive noise sensitivity 
and inevitably leads to erroneous contours. Mul- 
tistage gradient robustification method is pro- 
posed in this paper as an extension of Difference 
of Estimates(DoE) approach to robustify gradi- 
ent operators in noise environments. 

2. MORPHOLOGICAL GRADIENT 
AND DIFFERENCE OF 

ESTIMATES 

Morphological gradient operators enhance vari- 
ations of pixel intensity in images. It’s defined 
as the difference between the dilated version and 
the eroded version of the original image X: 

G(X)=(XW)-(X0) (1) 

In case the structuring element B is flat, the 
morphological operations of dilation $ and ero- 
sion 8 are then equivalent to the computation 
the local maximum and minimum. Therefore, 
the gradient at any point (m, n) E X is the max- 
imum variation of the gray level intensities in the 
given window: 

G,(m, n) = max{W,(m, n)} - min{Wz(m, n)} 

(2) 
Fig. l.b,e and Fig. 2.b,e show the output 

of the above-defined gradient operator acting 
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Figure 1: a)Origina.l image Peppers (512 x 512), the 
marked square is the training set; b)Morphological 
gradient of a); c)Detected contours of b); d)Image 
Peppers corrupted with salt( 10%) and pepper( 10%) 
noise; e)Morphological gradient of d); f)Detected 
contours of e). 

on the test images, Fig. l.c,f and Fig. 2.c,f are 
their corresponding contours detected using wa- 
tershed transformation. It is obvious to see 
that the standard gradient operator is not resis- 
tant against noise. The Difference of Estimates 
(DOE) approach [6] is therefore proposed to ro- 
bustify the gradient operator. Let 2 be the cor- 
rupted version of desired image X, DOE is for- 
mulated as 

(3) 
The rationale is that we choose two nonlinear fil- 

ters N,,, and Nm;,, to replace the max{.} and 
min{.} filters such that the difference of esti- 
mates, DoE?(m, n) is a good approximation to 
the difference of the local maximum and mini- 
mum of the noiseless image. The optimal non- 
linear filters N,,, and n/m;,, are designed under 
MAE criterion. 

Figure 5.a,b, Figure 6.a,b show the sig- 
nificant improvement of threshold Boolean fil- 
ter(TBF) [7] based gradient operator and order 
statistic(OS) based gradient operator acting on 
the impulse and Gaussian noise corrupted im- 
ages. TBF gradient [4] drops the stacking con- 
straint and requires less computation than stack 
filter gradient which was proposed in [6, 81. OS 
gradient [4] drops the symmetry restriction ex- 
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Figure 2: a)Original image Cennet (256 x 

256), the marked square is the training set; 
b)Morphological gradient of a); c)Detected contours 
of b); d)Image Cermel corrupted with Gaussian 
noise(mean=O,variance=200); e)Morphological gra- 
dient of d); f)Detected contours of e). 

isting in quasi-ranges [9], thereby relaxing the 
limits to the available tuning. 

For effective noise suppression in highly cor- 
rupted image, gradient operator usually requires 
a large window and consequently suffers from 
very high computational complexity. This sit- 
uation may be remedied by multistage gradient 
robustification which will be discussed in detail 
next. 

3. TWO-STAGE OF GRADIENT 

ROBUSTIFICATION 

Two approaches were studied to accomplish 
two-stage gradient robustification. The first way 
is t,o apply nonlinear filters sequentially to es- 
timate the dilation and erosion of uncorrupted 

image X from noise corrupted observation 2: 

Another way is a mixture of the DOE and 
adaptive filtering schemes: one stage of Differ- 
ence of Estimates followed by an optimal filter- 
ing to further enhance the performance: 

The flow charts for these two methods are 
depicted in Fig. 3, and Fig. 4. The algorithms 



Figure 3: Two-stage of Difference of Estimates 

proceed as follows: 

l)First, nonlinear filter N;noZr (Nminr) is de- 
signed through adaptation algorithm minimiz- 
ing the mean absolute error between max(X) 

(min(X)> and JGA(@ (n/,;,l(*)). 

2)Noise corrupted image X is then filtered by 
Jv mass (J%GA), producing an output n/maZr(X) 
(n/,;,r(X)). A one-stage gradient operator is 
formed by 

3.1)For two-stage DoE(MaxMax-MinMin), 
step 1 is repeated to obtain the filter 
Jv maZ2 (&;,Q), here MAE adaptation is 
carried out between max(X) (m;n(X)) and 

J&Z2 (GZd (X)) (&aid(&inl(~)))~ 

3.2)For DoE+3,,t approach, the optimal fil- 

ter -Topt is designed by adaptation algorithm 
minimizing MAE e.g. [lo, 11, 121 or MSE [13] 
between the output of standard morphological 
gradient operator acting on the original uncor- 
rupted image X and the output of the filter 
Fopt operating on the previous one-stage gradi- 
ent Gr(X). 

4)Two-stage gradient operators expressed by 
Eq. 4,5 are then used in processing other images 
to obtain accurate approximations of noiseless 
morphological gradient. 

4. IMPLEMENTATION AND 
EXPERIMENTAL RESULTS 

There are a wide variety of possible combina- 
tions of DOE and adaptive filtering algorithms to 
construct a two-stage gradient operator. Based 
on the good performance of TBF, OS and LMS 
linear filter [4] for impulse and Gaussian noise 

Figure 4: Difference of Estimates followed by an 
optimal filtering 

removal, they are chosen to present here to form 
two-stage gradient operators. 

For impulse corrupted Peppers image 
(Fig. l.d), we consider a cascade of two TBF 
filters to more robustly estimate the noise-free 
dilation and erosion, and it is presented below: 

&(X(n)) = 

FTBF3{&BFl(X(n))} - FTBF4{&‘BF2(X(n))) 

(7) 

X(n) is the observed noisy image window pro- 
cess containing Nr + N2 •t 1 = N samples: 

.X(n) = [x(n-Nr),x(n-Nr-t-l), . . .,x(ntN2)]T 

(8) 

For Gaussian noise corrupted image Cermet 

(Fig. 2.d), the OS gradient is followed by an op- 
timal FIR filtering to form a two-stage gradient 
operator: 

G&(n)) = FFZR{F,,_(,l)(x(n))-~~~-(~2)(~(n))} 

(9) 

rl and r2 do not necessarily have to be symmet- 
ric like N + 1 - r and r in the quasi-ranges. We 
Cdl 

G&X(n)) = L(r,)(X(n)) - L(r2)(X(n)) 

(10) 

modified quasi-ranges. 
The linear FIR filter is expected to effectively 

attenuate Gaussian noise. 
The simulation results for these two methods 

are shown in Fig 5.c,d, Fig 6.c,d. They are su- 

perior to any one-stage gradient robustification 
in terms of noise cancellation. 

The number of regions in the detected con- 
tour image was used as a quantitative measure- 
ment to evaluate the performance of proposed 
gradient operators. Table 1 lists the results ob- 
tained. 
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Figure 5: a)One-stage TBF gradient of noisy Pep- 
pers; b)Detected contours of a); c)Two-stage TBF 
gradient of noisy Peppers; d)Detected contours of c). 

Table 1: Comparisions of different 

algorithms’ : 

One-stageDoE 4074(TBF) 1089( OS) 
Two-stage DOE 3336(TBF) 232(OS+FIR) 

5. CONCLUSIONS 

Based on the DOE approach to gradient robusti- 
fication and adaptive filtering for noise removal, 
we derived two multistage gradient algorithms 
to achieve good contour detection for noisy im- 
ages. The first approach is a cascades of two 
DOE operators. The second one is one-stage DOE 
followed by an adaptive filtering to further im- 
prove the performance, proper incorporation of 
linear method in this approach is very effective 
for Gaussian noise attenuation. Results obtained 
by applying these new schemes to both impulse 
and Gaussian noise corrupted images indicate 
that they are more noise resistant than their one- 
stage counterparts for highly corrupted images 
at the cost of higher computational complexity. 
On the other hand, they are more cost efficient 
compared with one-stage DOE with large window 
size. 

‘Algorithms are specified in ( ), window size is 3 x 3 
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Figure 6: a)One-stage gradient of noisy Cermet; 
b)Detected contours of a); c)Two-stage gradient. of 
noisy Cermet; d)Detected contours of c). 
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